
Parking Functions of Fixed Displacement

Lucas Chaves Meyles, Richter Jordaan,
Gordon Kirby, Sam Sehayek, Ethan Spingarn

ICERM 2022

Abstract

Displacement in the context of classical parking functions measures the total number of
spots passed over when all the cars have parked. Utilizing Tutte polynomials, the number of
parking functions with a given total displacement is known. We obtain enumerative results
for the number of classical and prime parking functions with a fixed displacement partition
when up to three cars are displaced, and suggest a direction to generalize these formulae for
any number of cars. Moreover, an algorithm is obtained that computes the number of parking
functions exhibiting specific displacements that is significantly more efficient than direct sieving
techniques.

1 Introduction

Parking functions were introduced independently in the contexts of [13, 9, 14] and are an established
area of research that have connections to many combinatorial objects like labeled trees, non-crossing
partitions, the Shi arrangement, symmetric functions, and others. See [16] for a survey. In this
paper we will consider their relation to hashing problems in which parking functions are in terms
of numbered cars parking on a linear lot.

The goal of this paper is to provide tools to enumerate the number of parking functions exhibiting
specific displacement partitions. The paper is structured as follows: We begin by introducing the
relevant preliminaries. Chief among them is the observation that all displacement for a parking
function is completely contained within the nontrivial primes in its prime decomposition. In Section
3, this connection will be fully developed and results will be proven about the general shape, length,
and structure of primes exhibiting displacement. These ideas become crucial in understanding our
technique towards obtaining direct enumerative results for cars that displace up to 3 cars, the
subject of Section 4. In the case that a single car is displaced, Second-order Eulerian numbers make
an appearance. In general, the procedures followed in this paper can be applied to larger numbers
of displaced cars, which will be discussed, however the formulae become slightly unwieldy and are
not believed to add any particular insight so they are omitted from this paper. For clarity, many
of the longer case-work combinatorial proofs will be presented in the Appendix A.

In Section 5 an algorithm will be introduced that offers significant efficiency advantages to direct
sieving techniques for identifying and enumerating parking functions with fixed displacement but
varying displacement partitions. One of the important tools this algorithm relies on is the subject
of Section 2, the Parking Rearrangment for a parking function, which is a specific reordering that
essentially captures all the information about a parking function’s displacement. We will do some

1

analysis on the specific computational advantages to the proposed algorithm and conclude with some
data drawn from this program for specific displacement partitions in parking functions of various
lengths. Appendix B will comprise of the algorithm’s Sage implementation with full documentation.

1.1 Preliminaries

Consider the scenario where n cars are trying to park on a one-way street with n parking spots and
each car has a preferred parking slot (between 1 and n). Starting with the first car, each car drives
up to its preferred slot. If the slot is available, the car parks. If the slot is occupied, the car parks
in the next available slot after its preference. However, since the cars drive on a one-way street, if
all of the slots at and beyond the car’s preferred slot are taken, the car fails to park.

If we store the preferred spots of the cars in an n-tuple α “ pa1, a2, . . . , anq, where ai P rns is
the preferred slot of the i-th car, then α is a classical parking function of length n if and only if
all cars are able to park under these conditions. An equivalent definition is that when arranged in
nondecreasing order, α satisfies ai ď i. Denote by PFn the set of all parking functions of length n.

As an example, β “ p4, 1, 2, 2, 1q is a parking function, with cars parking in slots 4, 1, 2, 3, and 5
respectively. However, the sequence p4, 3, 2, 2, 3q is not a parking function, since when the last car
tries to park with preference 3, all of the slots from 3 to 5 are already occupied, so the last car fails
to park.

One subset of classical parking functions of particular interest in this paper are prime parking
functions. A parking function of length n is a prime parking function if removing any instance
of a 1 yields a parking function of length n ´ 1. For instance, the parking function p1, 3, 2, 1, 2q is
prime, since removing the first instance of a 1 produces the sequence p3, 2, 1, 2q and removing the
second instance of a 1 produces the sequence p1, 3, 2, 2q, both of which are parking functions (in
general, it turns out that the choice of 1 removed doesn’t matter). However, the parking function
p1, 1, 2, 4q is not prime, since after removing a 1, the sequence p1, 2, 4q is not a classical parking
function of length 3. The set of all prime parking functions of length n is denoted by PPFn. Prime
parking functions are also defined in [15] and are examples of rational parking functions which are
discussed at length in [3]. For length n they are enumerated by the formula pn´1qn´1 (c.f. [15, 3]).

With the previous examples in mind, we notice that since different cars are allowed to have
the same preferred slot, a parking function may have cars that are forced to park beyond their
preferences. If car in a parking function has preferred slot a, it parks in slot s ě a and we say
that the car experiences displacement s ´ a. For a parking function α “ pa1, a2, . . . , a2q, we
can write the permutation s “ ps1, s2, . . . , snq P Symn encoding that car i parks in slot si. This
permutation is referred to in the literature (see [7]) as the outcome of the parking function.
Then the displacement vector d “ pd1, d2, . . . , dnq “ ps1 ´ a1, s2 ´ a2, . . . , sn ´ anq is the n-
tuple measuring how many slots beyond its preference each car parks. The previous example
β “ p4, 1, 2, 2, 1q has displacement vector p0, 0, 0, 1, 4q. In general, the first entry of the displacement
vector is 0, and the others are nonnegative integers.

For any parking function α P PFn, we call the sum of the entries of the displacement vector
the total displacement Dpαq of the parking function. The total displacement measures the
total number of slots that are passed over by all cars in a parking function in the entire parking
procedure. Since the entries of the displacement vector are nonnegative integers, the nonzero terms
of the displacement vector arranged in nonincreasing order gives the displacement partition
λ $ Dpαq of a parking function, the integer partition of the total displacement. The parking function
β “ p4, 1, 2, 2, 1q has total displacement Dpβq “ 5 and has displacement partition λ $ 5 “ 4 ` 1.

2

2 Parking Order and the Parking Rearrangement

Definition 2.1. A parking function α “ pa1, . . . , anq P PFn is parking-ordered if ai ď i for all
i P rns. Denote the set of all parking-ordered parking functions by PF 1

n.
Any parking function β “ pb1, . . . , bnq can be rearranged into an parking-ordered parking func-

tion β1 (referred to as the parking rearrangement of β) as follows. Let s “ ps1, . . . , snq be the
outcome permutation of rns which records where each car in β parks. Then,

ˆ

s1 s2 ¨ ¨ ¨ sn
b1 b2 ¨ ¨ ¨ bn

˙

σ
ÝÝÑ

ˆ

1 2 ¨ ¨ ¨ n
bσp1q bσp2q ¨ ¨ ¨ bσpnq

˙

“ β1.

In other words, if the car with preference bi parks in spot si, then index si of β
1 will have number

bi at that index. The σ above is the unique permutation s´1.

Intuitively, parking order records where the car with a certain preference parks. The advantage
in arranging a parking function in parking-order is that the new parking function has the same
displacement partition as the original one. Furthermore, the new parking-ordered parking function
is as close as possible to ascending order without sacrificing the displacement partition. We formalize
these statements with the following lemma.

Lemma 2.2. Let α “ pa1, . . . , anq P PFn have displacement partition λ “ λ1 ` ¨ ¨ ¨ ` λk. Then, let
α1 be the parking rearrangement of α. Then, α1 is a parking function that has the same displacement
partition λ as α. Furthermore, α1 is in parking order.

Proof. By Definition 2.1, α1 is a permutation of the elements of α so α1 is a parking function of
length n.

Displacements occur when ai ‰ si. Thus, each i P rns either contributes 0 displacement or λi

displacement, as recorded by λ. Because σ in Definition 2.1 keeps si and ai in the same column
for all i P rns, si ´ ai “ sσpiq ´ aσpiq for all i P rns. This shows that α1 has the same displacement
partition as α.

We now show that α1 is in parking order. Notice that it is impossible for a car with preference
ai to park in a spot which is less than ai. Hence, ai ď si for all i P rns. Because the columns stay
together in the rearrangement of α under σ, we have that aσpiq ď i or that a1

i ď i, proving that α1

is in parking order.

Lemma 2.3. Let α and β be two parking functions. Then the relation α „ β defined by “α and β
have the same parking rearrangement” is an equivalence relation on parking functions.

Proof. Since each car in a parking function parks in only one spot, the process of rearranging a
parking function into parking order is well-defined, so α „ α for all parking functions α. Symmetry
and transitivity are immediate.

Lemma 2.2 and Lemma 2.3 can be summarized in the following proposition.

Proposition 2.4. Parking rearrangements partition the set of parking functions into classes that
all have the same displacement partition.

3

As stated above, parking-ordered parking functions are as close as possible to weakly increasing
order without sacrificing the displacement partition. Other reorderings often fail to preserve the
displacement partition. However, the following theorem, the proof of which can be found in [16],
shows us that any reordering will preserve the total displacement.

Theorem 2.5 (c.f. [16]). Total displacement is preserved under the symmetric group action, i.e.
if a P PFn has Dpaq “ k, then Dpσpaqq “ k for all σ P Sn.

Example 2.6. The parking function p1, 1, 2q and the permuted version p1, 2, 1q both have total
displacements of 2 but in the first parking function two cars are displaced by 1 spot each, whereas
the second parking function only has a single car being displaced by 2.

Remark 2.7. From Lemma 2.3, we can see that a sufficient condition on whether a parking
function’s displacement partition is preserved under σ is when α and σpαq have the same parking
rearrangement. However this condition is not necessary since p1, 1, 3, 2, 2q and p1, 2, 2, 1, 3q both
share the displacement partition p3, 2, 1q whilst having different parking orders (both are already
in parking order).

Directly from the definition for parking-ordered, we can count the number of parking-ordered
parking functions. The condition ai ď i implies that at every index i we have i values to choose, so
we have a total of n! ways to form a parking-ordered parking function of length n, which is codified
in the following proposition.

Proposition 2.8. The number of parking-ordered parking functions of length n is |PF 1
n| “ n!.

3 Prime Decomposition of Parking Functions

Recall that a prime parking function is a parking function which remains a parking function after
any instance of 1 is removed. One can verify that an equivalent definition of prime parking functions
is that if α is arranged into increasing order β, then b1 “ 1 and bi ă i for all 2 ď i ď n in β. Denote
by PPFn the set of all prime parking functions of length n. The principal result in this section
is that classical parking functions can be partitioned into disjoint prime parking functions, which
is captured in Theorem 3.1. The advantage of this point of view is that the problem of studying
displacement in parking functions can be reduced to the same study within the setting of prime
parking functions.

This following result shares some similarities with a remark from Gessel in [10] that every
increasing parking function can be uniquely decomposed into prime parking functions. However,
we utilize the parking rearrangement when decomposing a parking function into its prime parking
functions because the structure of the displacement partition of a parking function from this point
of view is completely characterized by its non-trivial component primes.

Theorem 3.1. Let α P PF 1
n be a parking-ordered parking function of length n. Then α can be

decomposed uniquely into prime parking functions whose displacement determines the displacement
partition of α.

Proof of Theorem 3.1. Let α “ pa1, . . . , anq P PF 1
n be a parking-ordered parking function of length

n. First we partition α into blocks that correspond to prime parking functions which we will call
the component primes. Each block is a maximal subsequence pai, . . . arq such that ai “ i, aj ě ai
for all j ě i, and ar`1 “ r ` 1 (except when r “ n).

4

In parking order the ith car ci parks in spot i. Thus, if α has blocks A1, A2, . . . , Ak then cars
with preferences in Aj only park in |Aj | consecutive spots following the spots occupied by cars with
preference in previous blocks.

Since α is in parking-order, cars indexed within Aj will only park in some spot within the indices
of Aj . Thus, displacement occurs only within these blocks.

We will now prove that each block in α is a shifted prime parking function. Let Aj “

paj1 , . . . , ajr q be a block in α with r elements. Then aj1 “ j1 and for any i P tj1 ` 1, . . . , jru

either ai ă i or if ai “ i then there is some ℓ ą i such that aℓ ă ai
Arrange Aj into weakly increasing order and denote this by Bj “ pbj1 , . . . , bjr q. Then, the above

implies that bi ă i for all i P tj1 ` 1, . . . , jru and bj1 “ aj1 “ j1. Altogether this implies Aj is a
prime parking function Pj when each entry is shifted by subtracting by j1 ´ 1.

Definition 3.2. For finite tuples of integers A “ pa1, . . . , amq and B “ pb1, . . . , bnq we will write
B ` k to mean pb1 ` k, . . . , bn ` kq and we denote the pipe A|B as the append of A with B ` m
where |A| “ m. E.g. for A “ p1, 2, 1q and B “ p1, 1, 4, 3, 2q, A|B “ p1, 2, 1, 4, 4, 7, 6, 5q.

Remark 3.3. Although the hypothesis of Theorem 3.1 requires that α be a parking-ordered park-
ing function, any parking function can be split into its component prime parking functions. Take
any parking function α P PFn and change it into its parking rearrangement α1 by the canonical
permutation σα (the inverse of the outcome permutation). Then, perform the process outlined in
Theorem 3.1 to identify the component prime parking functions P1, . . . , Pk (these are the appro-
priately shifted blocks from the proof above, now thought of as prime parking functions). Once
the prime parking functions have been stratified, apply σ´1

α to P1|P2| . . . |Pk (The pipe of these
prime parking functions) to recover the original ordering of the parking function, but now with the
component prime parking functions.

Notice that the pipe P1| . . . |Pk is the same integer tuple as pA1, . . . , Akq where Ai is a block
defined in the proof of Theorem 3.1. We will often abuse our notation to refer to these Ai’s as
component primes even though the actually prime parking function is the shifted version Pi.

Moreover, the proof of Theorem 3.1 proves that cars with preferences in one block will not park
in another block. In tandem with the previous paragraph, this implies that displacement for any
parking function only occurs within its component primes.

Example 3.4. Let α “ p4, 2, 6, 1, 1, 5, 4q. Following the process outlined in Theorem 3.1, α1 “

p1, 2, 1, 4, 5, 6, 4q. Decomposing α1 into shifted primes:

α1 “ p 1, 2, 1 , 4, 5, 6, 4 q,

where the values highlighted in red correspond to the first prime parking function P1 “ p1, 2, 1q while
the values highlighted in teal correspond to the second prime parking function, P2 “ p1, 2, 3, 1q.
Then, rearranging α into its original order, we obtain

α “ p 4 , 2 , 6 , 1, 1 , 5, 4 q.

We can conveniently visualize how and where α splits into its component prime parking functions
using labeled Dyck paths. Recall that there is a bijection between parking functions of length n
and labeled Dyck paths from p0, 0q to pn, nq which remain above the x “ y line (c.f. [6]). Figure 1
as seen below is the Dyck path associated with α.

5

1 2 3 4 5 6 7

4

5

2

1

7

6

3

Figure 1: The Dyck Path associated with α.

We claim that exactly where the Dyck Path hits the x “ y is where α splits. According to the
bijection, vertical steps at index i occur for each instance of preference i in the parking function.
A horizontal step from column i to i ` 1 occurs when there are no more possible vertical steps at
column i or, in other words, when there are no more preferences of i to count. Therefore, the shape
of the Dyck path only depends on the value of the preferences in the parking function, not their
position. Then, arranging α into its parking rearrangement α1 should not change the shape of its
associated Dyck path. Then, the Dyck path hits the x “ y line at p1, 1q when there is only one 1,
at p2, 2q when there are only 2 elements from the set t1, 2u, and so on. In general, the Dyck path
hits the x “ y line at pk, kq when there are only k elements from the set t1, . . . , ku in α. This is
equivalent to conditions 1 and 2 from Theorem 3.1, so α splits where its Dyck path hits the x “ y
line.

Notice that α has 3 elements from the set t1, 2, 3u, so it hits the x “ y line at p3, 3q. This also
implies that a new prime parking function begins at index 4, which agrees with the conditions in
Theorem 3.1.

The “returns” to the line x “ y correspond exactly to the idea of a breakpoint as defined in
[12].

Definition 3.5. For a parking function α P PFn, b is a breakpoint for α if |ti | αi ď bu| “ b.

Remark 3.6. With this definition in mind, it is clear that the number of component primes for
a parking function coincides with the number of breakpoints. Also we observe that the shift that
turns a block Ai from the proof of Theorem 3.1 to a prime parking function Pi is exactly the value
of the breakpoint immediately preceeding Ai.

The ability to split parking functions into its component prime parking functions is crucial
in proving many other intriguing facts. First, we use Theorem 3.1 to enumerate the number of
parking-ordered prime parking functions, denoted by PPF 1

n. We require the following definition to
enumerate PPF 1

n.

Definition 3.7. A permutation σ “ pσ1, . . . , σnq P Sn is decomposable if there exists an i P rns

such that every element in pσ1, . . . , σiq is less than every element in pσi`1, . . . , σnq. A permutation
σ is indecomposable if σ is not decomposable. Denote the set of indecomposable permutations
of length n by SIn. Connected, irreducible, and indecomposable are used interchangeably.

6

Example 3.8. Let σ “ p3, 1, 2, 5, 6, 4q P S6 be a permutation of size 6. Then σ is decomposable
because p3, 1, 2 | 5, 6, 4q splits σ where everything to the left of the bar is less than everything to the
right. Let τ “ p3, 5, 6, 1, 4, 2q P S6. Then τ is indecomposable as there is no i P r6s where everything
to the left of and including index i is less than everything to the right.

Theorem 3.9. The number of parking-ordered prime parking functions of length n is equal to the
number of indecomposable permutations of length n. In other words, |PPF 1

n| “ |SIn|.

Proof. We prove this using a combinatorial argument. Let pn count the number of parking-ordered
prime parking functions of length n. We will count the number of non-prime parking-ordered
parking functions, so let α “ pa1, . . . , anq be a parking function of this kind. By Theorem 3.1, there
exists an index k ` 1 which is the last breakpoint of α. Then, pa1, . . . , akq is some parking-ordered
parking function, and pak`1, . . . , anq is a parking-ordered prime parking function. By Proposition
2.8, there are k! possibilities for pa1, . . . , akq and there are pn´k possibilities for pak`1, . . . , anq.
Furthermore, k ` 1 records where α splits so k can range anywhere from 1 to n ´ 1. Thus, the
number of non-prime parking-ordered parking functions is

n´1
ÿ

k“1

k!pn´k.

Because we want to count prime parking-ordered parking functions, we obtain the recurrence rela-
tion

pn “ n! ´

n´1
ÿ

k“1

k!pn´k.

There is only one prime parking-ordered parking function of length 1, which is p1q. Hence, the
initial value for this recurrence is p1 “ 1. According to [5] , this recurrence relation is the exact
same as that for indecomposable permutations, proving that |PPF 1

n| “ |SIn|.

Corollary 3.9.1. The enumeration for the number of parking-ordered prime parking functions of
length n may be obtained from the generating function

1 ´
1

ř8

k“0pk!xkq

Proof. The recurrence in Theorem 3.9 is the subject of the sequence OEIS A003319, and the desired
generating function is given in [8].

Prime parking functions are the building blocks of all displacement in parking functions, which
suggests that it is useful to consider how displacement arises in prime parking functions. We begin
with bounds on the length of a prime parking function for a fixed displacement partition. The
following lemma provides an upper bound on the length of a prime parking function based only on
its total displacement.

Proposition 3.10. The longest possible length for a prime parking function α with total dis-
placement Dpαq “ k is k ` 1. Furthermore, the number of prime parking functions α with total
displacement Dpαq “ k and length k ` 1 is

pk ` 1q!

2
.

7

Proof. First, we show that a prime parking function α with a total displacement of k and length
k ` 1 exists. Let

α “ p1, 2, 3, . . . , k ´ 1, k, 1q.

The vector α has length k ` 1 and has a total displacement of k by the final 1 in the sequence. No
other car contributes to the displacement as the first k cars form a permutation on rks. Moreover,
α is a prime parking function: arranging α in nondecreasing order yields

β “ p1, 1, 2, 3, . . . , k ´ 1, kq,

which satisfies the property that β1 “ 1 and βi ă i.
We now need to show that k`1 is in fact the maximal length for a prime parking function with

total displacement k. For the sake of contradiction, suppose there exists a prime parking function
α “ pa1, . . . , aℓq with total displacement k and length ℓ ą k ` 1. Arranging α in nondecreasing
order yields

β “ paσp1q, . . . , aσpℓqq.

Because α is a prime parking function, aσpiq ă i for 2 ď i ď ℓ and aσp1q “ 1. In addition,
total displacement is invariant under permutation by Theorem 2.5, so β has total displacement k.
However, the condition that aσpiq ă i for 2 ď i ď ℓ in conjunction with aσp1q “ 1 implies that each
of those aσpiq must experience a displacement of at least 1. Because there are ℓ ´ 1 preferences
from spots 2 through ℓ, each displaced by at least 1, the total displacement is at least ℓ ´ 1 ą k,
a contradiction. Therefore, the longest prime parking functions with displacement k are of length
k ` 1.

We now show that the number of those maximal length prime parking functions with total

displacement k is pk`1q!
2 . We will do so by showing that a prime parking function has length k ` 1

and total displacement k if and only if it is a permutation of rks with a 1 inserted at any index.
Let α be a permutation of rks over k`1 spots with an extra 1 inserted at index i for 1 ď i ď n`1.

If we order α in nondecreasing order, then

β “ p1, 1, 2, 3, . . . , k ´ 1, kq

which clearly satisfies the conditions for being a prime parking function as specified in the beginning
of the proof. Furthermore, α has length k ` 1 and has a total displacement of k.

Let α “ pa1, a2, . . . , ak`1q be a prime parking function with length k` 1 and total displacement
k. Arranging α into nondecreasing order, we get that

β “ paσp1q, aσp2q, . . . , aσpk`1qq.

By the prime parking function condition, aσp1q “ 1 and aσpiq ă i for 2 ď i ď k ` 1. The restriction
that the total displacement is k then prompts the claim that aσp1q “ 1 and aσpiq “ i ´ 1 for all
2 ď i ď k ` 1. Suppose otherwise, so there exists an i from 2 through k ` 1 such that aσpiq “ j for
some 1 ď j ă i ´ 1. Then the preference aσpiq will contribute i ´ j ą 2 to the total displacement.
Each other element of β must contribute at least 1 to the total displacement by the prime parking
function condition. Therefore, the total displacement must be at least 2 ` pk ´ 1q ¨ 1 “ k ` 1, a
contradiction to the fact that the total displacement must be k.

Hence, a prime parking function has length k ` 1 and total displacement k if and only if it is a
permutation of rks with a 1 inserted at any index. The number of such prime parking functions is

pk ` 1q!

2

8

as there are k`1 elements in rks with the extra 1, but there are two 1s, so the division by 2 accounts
for the repetition.

To provide a lower bound on the length of a prime parking function with a fixed displacement
partition, the following lemma will be necessary.

Lemma 3.11. For a fixed displacement partition λ “ λ1 ` λ2 ` ¨ ¨ ¨ ` λk, a minimal length park-
ing function with displacement partition λ can be attained with the displacement terms arising in
nondecreasing order in the parking process. In other words, there’s a parking function of minimal
length where the first car to be displaced is displaced by λk, the second displaced car is displaced by
λk´1, and so on, until the last displaced car is displaced by λ1.

Proof. First, suppose two cars are being displaced, one by ℓ ą 0 and one by k ą ℓ. In order to achieve
a displacement of k, at least k slots must already be occupied. Similarly, the displacement of ℓ
requires at least ℓ slots to be already occupied. Hence it’s optimal to have the ℓ`1 cars (contributing
to and including the car displaced by ℓ) comprise the slots that build up the displacement for k.
Indeed, this approach produces a parking function of total length k`1, whereas if the displacement
of k came first, an additional entry to produce displacement ℓ would have to be appended, requiring
k ` 1 ` 1 ą k ` 1 entries. In general, this reasoning shows that it’s optimal to have smaller
displacements absorbed in the necessary build up of larger displacements, which is guaranteed with
displacements occur in nondecreasing order. Hence a parking function following this process, at
each step only adding terms necessary to achieve the next largest displacement, achieves minimal
length.

Now we can provide a lower bound on the length of a prime parking function with a fixed
displacement partition.

Theorem 3.12. Let α be a prime parking function of length n with displacement partition λ “

λ1 ` λ2 ` ¨ ¨ ¨ ` λk with k ě 1. Then the follow algorithm provides a lower bound on n.

• In step 1, initialize a counter variable with initial value λk+1

• At step i ą 1, let c denote the value of the counter variable. If c ě λi, increment c by 1.
Otherwise, set c equal to λi ` 1. Repeat for a total of k steps

• Return the value of the counter variable

The lower bound is attained.

Proof. We claim that after after step i, the value of the counter records the length of a minimum
length of a parking function with displacement partition equal to the i rightmost values of λ, which
are λk´i`1, λk´i`2, . . . , λk. Let’s prove this claim by induction on i.

For the base case i “ 1, suppose λk “ v. The minimum length parking function with displace-
ment partition λk is a permutation of rvs followed by a 1, which has length v ` 1. Since the value
of the counter variable is initially set to λk ` 1 “ v ` 1 in the first step, the base case holds.

For the inductive step, we assume the value of the counter c after i steps records the minimum
length parking function with displacement partition λk´i`1, λk´i`2, . . . , λk. There are the two
cases: c ě λn´i, or not. For the first case, c ě λn´i. By Lemma 3.11, we know that the minimal
length parking function on the rightmost i`1 values can be attained with displacement λi occurring
last, so its total length is at least one more than the length of the minimal parking function on

9

the i rightmost terms. The minimal parking function βi on the i rightmost values of λ requires
c ě λn´i spots, so another added car will park in slot c ` 1. Now, notice that appending the value
c ` 1 ´ λi ą 0 to βi preserves the previous displacements and adds a displacement term of λn´i.
Since this parking function is obtained by adding exactly one entry to βi, the resulting parking
function must be of minimal length to displace the rightmost i ` 1 terms.

Now suppose c ă λn´i. Again, by Lemma 3.11, we know that there’s minimal length parking
function on the rightmost i` 1 values can with displacement λi occurring last. Since there are less
than λn´i slots occupied in the minimal length parking function βi that displaces the rightmost i
terms, and producing a displacement λn´i requires at least λn´i occupied slots, we can’t produce a
displacement of λn´i by adding only one term. Therefore adding the required λn´i´c terms c`1 to
λn´i, and then one more car with preference 1 and hence displacement λn´i, maintains the previous
i displacements and minimally adds displacement λn´i. In this case, there are λn´i ` 1 occupied
slots, which gives the claimed value of the counter variable after i ` 1 steps. This parking function
must be minimal on the rightmost i`1 terms, since any parking function with a displacement term
λn´i has at least λn´i ` 1 terms, and the constructed parking function above has length exactly
λn´i ` 1. This completes the induction.

The lower bound in the lemma follows, since after the algorithm terminates, the value of the
counter records the minimum length of a parking function with displacement partition λ, which is
at least the minimum length of a prime parking function with displacement partition λ.

Also observe that the previous inductive proof provides a construction of the minimal-length
parking function, which is also prime. Let’s show this by induction on the number of steps of the
algorithm. For the base case, a permutation followed by a 1 is prime. Now consider the inductive
case. When c ă λn´i, the algorithm appends a 1 to a parking function that, by the inductive
hypothesis, is prime, which produces another prime parking function. One can verify that given a
prime parking function of length v, appending any value other than v ` 1 produces another prime
parking function of length v ` 1. Hence when c ě λn´i, the parking function produced by the
algorithm remains prime after appending c ` 1 ´ λi ă c ` 1, completing the inductive step. Hence
the lower bound is attained.

4 Direct Enumerations

4.1 A Single Displaced Car

Theorem 4.1. The number of parking functions of size n with a displacement partition of λ “ k ą 0
is

n!

k ` 1
pn ´ kq.

Proof. If the displacement partition of α P PFn is λ “ k, then only one car, say car i with preference
ai P rns, is displaced, and it’s displaced by k. Since k is the only part of the partition—and all
displacement in a parking function occurs within a parking function’s prime components by Remark
3.3—α must have a single nontrivial prime component which contributes the displacement term k.
Every car outside of this prime component parks without displacement.

If the displaced car has preference ai, then in order to have a displacement of k, the k spots
ai, ai ` 1, . . . , ai ` k ´ 1 must already be occupied before car i parks. Since only car i is displaced,
each of these k cars must park without displacement, so there are no repeated preferences in this

10

nontrivial prime component before car i parks. Therefore, α’s nontrivial prime component is of the
form ai, ai ` 1, . . . , ai ` pk ´ 1q, ai.

We will now count the number of parking functions subject to the constraint in the previous
paragraph. The number of ways to choose the starting value ai is n ´ k as ai can be any value in

rn´ks. The number of ways to place the values ai, ai `1, . . . , ai `pk´1q in the n spots is

ˆ

n

k ` 1

˙

.

The number of ways to permute these values is k!. Finally, the number of ways to permute the
remaining values of the parking function that must park at their preference is pn ´ pk ` 1qq!. This
results in

pn ´ kq

ˆ

n

k ` 1

˙

k! pn ´ pk ` 1qq! “
n!

k ` 1
pn ´ kq

as the total number of ways to count the number of parking functions with displacement partition
k.

The fact that a prime parking function with displacement partition λ “ k ą 0 has length
n “ k ` 1 gives the following corollary.

Corollary 4.1.1. The number of prime parking functions of length n with displacement partition
λ “ k ą 0 is

"

k! for n “ k ` 1,
0 else

*

Remark 4.2. Notice that when k “ 1 in Theorem 4.1, the formula we recover gives the Lah
numbers1

n!

2
pn ´ 1q,

matching the result obtained in [2].

We present further connections with parking functions with one car displaced to other enumer-
ative formulae, such as the second-order Eulerian numbers defined below.

Definition 4.3. The Second-order Eulerian numbers Apn,mq count the permutations of the
multiset t1, 1, 2, 2, . . . , n, nu with m ascents which have the property that for each k, all the numbers
appearing between the two occurrences of k in the permutation are greater than k. As shown in
[11], they satisfy the recurrence relation

Apn,mq “ p2n ´ m ´ 1qApn ´ 1,m ´ 1q ` pm ` 1qApn ´ 1,mq.

Remark 4.4. Notice that Apn, nq “ 0 for any integer n. This follows from the observation that
any permutation of the multiset t1, 1, 2, 2, ..., n, nu that satisfies the second condition in Definition
4.3, when restricted to consecutive integers i, i`1, looks like one of ti, i, i`1, i`1u, ti, i`1, i`1, iu,
and ti ` 1, i ` 1, i, iu, which have at most one ascent. Since there are n ´ 1 pairs of consecutive
integers, the permutation can have at most n ´ 1 ascents, so Apn, nq “ 0.

Notice also that Apn, n ´ 1q “ n! follows from the given recurrence relation since Ap1, 0q “ 1
and Apn, n ´ 1q “ nApn ´ 1, n ´ 2q ` nApn ´ 1, n ´ 1q “ nApn ´ 1, n ´ 2q ` 0.

1Lah numbers are the focus of OEIS: A001286

11

Corollary 4.4.1. The number of parking functions of length n with one car displaced,

n´1
ÿ

k“1

pn ´ kqn!

k ` 1
(1)

is equal to the Second-order Eulerian number Apn, n ´ 2q.2

Proof. The formula is obtained by summing the result of Theorem 4.1 from k “ 1, the minimum a
car can be displaced, to k “ n´ 1, the maximum a car can be displaced. We prove the corollary by
showing the Second-order Eulerian number Apn, n´ 2q and the formula have the same initial value
and satisfy the same recurrence relation. For the Second-order Eulerian numbers, Ap2, 0q “ 1. The

initial value for (1) is when n “ 2, and indeed
1
ř

k“1

p2´kq2!
k`1 “ 1.

Applying the more general recurrence from [11] to the specific tuple pn, n ´ 2q, and following
Remark 4.4, we have

Apn, n ´ 2q “ pn ` 1qApn ´ 1, n ´ 3q ` pn ´ 1qApn ´ 1, n ´ 2q

“ pn ` 1qApn ´ 1, n ´ 3q ` pn ´ 1qpn ´ 1q!

Through algebraic manipulations, one can see that

n´1
ÿ

k“1

pn ´ kqn!

k ` 1
“ pn ` 1q

n´2
ÿ

k“1

ppn ´ 1q ´ kqpn ´ 1q!

k ` 1
` pn ´ 1qpn ´ 1q!

so the same recurrence is satisfied and the result follows.

4.2 Two Displaced Cars

Now we enumerate classical and prime parking functions of length n where two cars are displaced.
When two cars are displaced it is helpful to separate into cases corresponding to the order in which
the cars experience displacement.

Definition 4.5. For a parking function α with displacement partition λ “ d1`d2`¨ ¨ ¨`dm $ Dpαq

(where the di’s are nonincreasing) where m cars are displaced, the displacement order is the m-
tuple whose i-th entry is equal to the displacement of the i-th displaced car in the parking function.
After all cars have parked, reading the displacements of parked cars from left to right gives the
displacement order. For example, the parking function p1, 2, 1, 4, 2q has displacement order p2, 3q,
which is shown visually in Figure 2.

2Second-order Eulerian number Apn, n ´ 2q is the focus of OEIS A002538

12

car-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngc1 c2 c3 c4 c5

1 2 3 4 5

displacement 2

displacement 3

Figure 2: The parking configuration for the parking function p1, 2, 1, 4, 2q. Reading from left to
right, the first displaced car, c3, is displaced by 2 and the second displaced car, c5, is displaced by
3, so the displacement order is p2, 3q.

The parking function p3, 4, 3, 1, 1q has displacement order p1, 2q since after all cars have parked,
the earliest parking spot taken by displaced car corresponds to a car displaced by 1 and the second
smallest slot taken by a displaced car corresponds to displacement 2. Figure 3 visually shows this
parking process.

car-silhouette-side-14.png car-silhouette-side-14.pngcar-silhouette-side-14.png car-silhouette-side-14.pngcar-silhouette-side-14.pngc1 c2 c3c4 c5

1 2 3 4 5

displacement 1 displacement 2

Figure 3: The parking configuration for the parking function p3, 4, 3, 1, 1q. The left-right order of
the displacement arrows give the displacement order p1, 2q.

It is important to observe that the displacement order comes from the left-right order of displaced
cars after all cars have parked, rather than the order of displacement terms in time. For instance,
in the previous example, car c3 parks and is displaced before c5 in the parking process, yet since
c5’s occupied slot is before c3’s, the displacement term corresponding to c5 comes first in the
displacement order.

For a displacement partition with m distinct terms, the m! possible displacement orders are
mutually exclusive and their union gives all possible ways a parking function can produce the
desired displacement partition.

When 2 cars are displaced in a parking function, the displacements either happen in a single
prime or in disjoint primes. Since we’ve already characterized a single displaced car in a prime
parking function in Theorem 4.1, we now characterize the possible parking orders that give rise to
2 displaced cars where both displacements happen in a single prime.

For brevity’s sake, we introduce a discrete interval notation for any sequence of consecutive
terms. This should not be confused with the standard continuous interval notation. For any
sequence pa, a ` 1, . . . , a ` kq, we rewrite this as

ra, a ` ks :“ pa, a ` 1, . . . , a ` kq.

13

Lemma 4.6. Let α be a prime parking function with displacement partition λ “ k` ℓ with 1 ď ℓ ă

k ď n ´ 1. Then exactly one of the following is true:

1. The displacement order is pℓ, kq, and the parking order of the prime is given by

pra, a ` j ´ 1s
loooooomoooooon

j terms

, ra ` j, a ` j ` ℓ ´ 1s
loooooooooooomoooooooooooon

ℓ terms

, a ` j, ra ` ℓ ` j ` 1, a ` k ` i ´ 2s
loooooooooooooooooomoooooooooooooooooon

k´ℓ`i´j´2 terms

, a ` i ´ 1q

for integers 0 ď j ď k ´ ℓ ´ 1,1 ď i ď ℓ ` j ` 1. The prime has length k ` i.

2. The displacement order is pk, ℓq, and the parking order of the prime is given by

pra, a ` k ´ 1s
looooooomooooooon

k terms

, a, ra ` k ` 1, a ` k ` i ´ 1s
looooooooooooooomooooooooooooooon

i´1 terms

, a ` k ´ ℓ ` iq

for an integer 1 ď i ď ℓ. The prime has length k ` i ` 1.

Remark 4.7. The variable a in the lemma is just some value in rns and represents the smallest
value in this prime component of the parking function. We use a rather than the number 1 to make
clear that in a classical parking function, the smallest value of a prime component may not be 1
until a shift is performed on the component.

Proof of Lemma 4.6. There are two cars displaced, one by k and one by ℓ. Let ck be the car
displaced by k and cℓ be the car displaced by ℓ.

In order for cℓ to be displaced by ℓ, we must have the subpattern pa ` j, a ` j ` 1, . . . , a `

j ` ℓ ´ 1, a ` jq, where the j accounts for the fact that the subpattern needn’t start at the first
position a in the prime (where a is the smallest repeated value in the prime, or the number 1
in numbers, up to a shift). Indeed, since the smaller displacement ℓ comes before the larger
displacement k, the subpattern producing the displacement ℓ has k ´ ℓ possible “starting values”,
namely a, a ` 1, . . . , a ` j, for 0 ď j ď k ´ ℓ ´ 1. The j terms a through a ` j ´ 1 precede the
subpattern producing the displacement of ℓ.

For example, if the displacement order is p2, 5q, we need a buildup of 5 cars before any car can
be displaced by 5, so we can attain the initial displacement of 2 via 12145, 12325, or 12343 before
any car is displaced by 5, giving 5 ´ 2 “ 3 options.

After the displacement of ℓ, we must produce a displacement of k. Let p denote the preference
of ck, and let i “ p ´ a ` 1. Since by construction, a is the smallest repeated value in the prime,
we have p ě a and so i ě 1. Also, to remain a single prime, ck must pass over some value in the
prime subpattern producing displacement ℓ, so we have p ď a ` i ` ℓ and so i ď ℓ ` j ` 1. In order
for ck to have displacement k, it must park in slot p` k “ a` i´ 1` k. Hence ck passes over slots
the ℓ´ i` j ` 2 slots p through a` ℓ` j, as well as the k ` i´ ℓ´ j ´ 2 slots a` ℓ` j ` 1 through
a ` i ` k ´ 2, for a combined total displacement of pℓ ´ i ` j ` 2q ` pk ` i ´ ℓ ´ j ´ 2q “ k. So the
subpattern pa` ℓ` j`, . . . , a` i` k ´ 2q, which has k ` i´ ℓ´ j ´ 2 entries, must precede the final
entry. Finally, ck parks with preference p “ a ` i ´ 1. Since j can range from 0 to k ´ ℓ ´ 1 and i
can range from 1 to ℓ ` j ` 1, case 1 follows.

Now suppose that ck parks before cℓ. In order for ck to be displaced by k, there must be the
subpattern pa, a ` 1, . . . , a ` k ´ 1, aq. Since both displacements happen in a single prime parking
function, cℓ parks after ck and cℓ must pass over at least one of the k ` 1 values in the subpattern
pa, a ` 1, . . . , a ` k ´ 1, aq. Since k ` 1 slots are already occupied and ℓ ă k, cℓ cannot have a

14

preference before ck’s prime starts. Indeed, since slot a ` k ` 1 is the next available slot, cℓ’s
preference p is at least a ` k ` 1 ´ ℓ, since otherwise cℓ would have displacement more than ℓ. Let
i “ p ´ pa ` k ` 1 ´ ℓq ` 1, so i ě 1. Also, p ď a ` k to remain a single prime, so i ď ℓ. Since
cℓ has displacement ℓ, it must park in slot p ` ℓ “ a ` k ` i, so the i ´ 1 slots a ` k ` 1 through
a ` k ` i ´ 1 need to be taken before ck parks, adding the subpattern right before the last entry.
Then ck parks with preference p “ a ` k ´ ℓ ` i. Hence case 2 follows.

Proposition 4.8. For a prime parking function α with displacement partition λ “ k ` k where
1 ď k ď n ´ 2, the parking order of the prime is given by

pra, a ` k ´ 1s
looooooomooooooon

k terms

, a, ra ` k ` 1, a ` k ` i ´ 1s
looooooooooooooomooooooooooooooon

i-1 terms

, a ` iq

for an integer 1 ď i ď k. The length of the parking order of the prime is k ` 1 ` i.

Proof. There are two cars displaced, both by k. Let c1 denote the first car displaced, and let c2
denote the second. By assumption, both displacements happen in a single prime.

In order for c1 to be displaced by k, there must be the length k ` 1 subpattern pa, a` 1, . . . , a`

k ´ 1, aq, which results in the first k ` 1 slots being occupied. Suppose that c2 has preference
a ` i. Since both displacements happen in a single prime, c2 parks after c1 and c2 must pass
over at least one of the k ` 1 values in the previous subpattern, so i ď k. However, we note that
c2 cannot have preference a, since in this case it would park in slot a ` k ` 1 and would have
displacement k ` 1 ą k, so the earliest preference that c2 can has is a ` 1. Hence 1 ď i ď k. In
order for c2 to have displacement k, it must park in slot a` i` k, which means that the i´ 1 slots
a ` k ` 1 through a ` i ` k ´ 1 must be occupied before c2 parks. Hence for i ą 1, the subpattern
pa ` k ` 1, . . . , a ` i ` k ´ 1q must precede the final entry a ` i. After c2 parks, slots a through
a ` i ` k are all occupied, so the pattern has length k ` 1 ` i. Since i can range from 1 to k, the
lemma follows.

Remark 4.9. When two cars are displaced, the pattern of the displacement partition λ “ k ` k
is identical to the pattern of the displacement partition λ “ k ` ℓ, ℓ ă k with displacement order
pk, ℓq, after replacing ℓ with k. The final preference for the latter is is a ` k ´ ℓ ` i, which after
substituting k for ℓ, becomes a ` i which is the final preference of the former.

Given the patterns that produce a displacement partition, then counting the rearrangements of
each pattern that preserve the displacement partition gives the total number of parking functions
in question.

Theorem 4.10. The number of parking functions of length n with displacement partition λ “ k`ℓ,
where 1 ď ℓ ă k ď n ´ 1 is given by

n!pn ´ kqpk ´ ℓq

pk ` 1qpℓ ` 1q
`

ℓ`1
ÿ

i“2

n!pn ´ k ´ i ` 1q

pℓ ` 1qpk ` iq
`

ℓ
ÿ

i“1

n!pn ´ k ´ iq

pk ` i ` 1qpk ` 1q

`2k!ℓ!

ˆ

n ´ pk ` ℓq

2

˙ˆ

n

k ` 1

˙ˆ

n ´ pk ` 1q

ℓ ` 1

˙

pn ´ pk ` ℓ ` 2qq!

for n ě k ` ℓ ` 2.

15

Proof. We can isolate the disjoint cases by Lemma 4.6 and enumerate them separately. For each
case, we determine how parking functions of length n contain the pattern, accounting for the ways
that valid rearrangements of certain letters in the pattern can happen.

Case 1. Both displacements happen in a single prime and the displacement order is pℓ, kq.
Following the notation of the lemma, assume 1 ď i ď ℓ ` 1.

Subcase (i): i “ 1
First, consider i “ 1. We note that the length of the pattern is k ` 1, producing a factor of

pn ´ kq to account for the ways to choose a P rn ´ ks. Also, there are
ˆ

n

k ` 1

˙

pn ´ pk ` 1qq! “
n!

pk ` 1q!

ways to select the k ` 1 slots in the parking function of length n that the pattern will occupy and
arrange the remaining n ´ pk ` 1q entries outside of the pattern (which must be a permutation of
rn ´ k ´ 1s in order to avoid contributing any more displacement).

For the case i “ 1, there may be different ways to choose the “starting value” of the subpattern
that generates the ℓ displacement, corresponding to the choice of j in Lemma 4.6.

There must be some subpattern of length ℓ ` 1 that contributes the ℓ displacement. There are
k letters before the last a (the very last entry in the pattern), so there are k ´ ℓ “starting values”
for the subpattern that produces the ℓ displacement (in the previous example, the starting values
were a and a ` 1). This introduces a factor of pk ´ ℓq. There are

ˆ

k

ℓ ` 1

˙

pk ´ pℓ ` 1qq! “
k!

pℓ ` 1q!

ways to select the slots in the pattern occupied by the subpattern producing ℓ, and arrange the re-
maining entries (which can be placed in any order, since none of them experience any displacement)
before the final a. Finally, since all of the first ℓ entries in the subpattern producing displacement ℓ
park in their preferred slots, we can arrange these first ℓ entries in any order, giving a factor of ℓ!.

Combining gives that for i “ 1, the number of parking functions from case 1 is given by

n!k!ℓ!pn ´ kqpk ´ ℓq

pk ` 1q!pℓ ` 1q!
“

n!pn ´ kqpk ´ ℓq

pk ` 1qpℓ ` 1q

Subcase (ii): i ě 2
First, notice that for i ą 1, the “starting value” of the subpattern producing displacement ℓ

must be a, since otherwise the entries before the “starting value” correspond to cars that are neither
displaced nor under the influence of a displaced car, and hence would themselves be trivial prime
parking functions and would not be part of the single prime that contributes the displacements.
Hence we can assume j “ 0.

We note that the length of the pattern is k ` i, producing a factor of pn ´ k ´ i ` 1q to account
for the ways to choose a P rn ´ k ´ i ` 1s. Also, there are

n

k ` i
pn ´ pk ` iqq! “

n!

pk ` iq!

ways to select the k ` 1 ` i slots in the parking function of length n that the subpattern will
occupy and arrange the remaining n ´ pk ` 1 ` iq entries outside of the pattern (which must be

16

a permutation of rn ´ k ´ 1 ´ is in order to avoid contributing any more displacement). Also, we
notice that the first ℓ terms before the first displaced car can be arranged in any order, which can
happen in ℓ! ways. In addition, the k ´ ℓ ` i ´ 2 terms between the first displaced car and the
last entry are all parking without being displaced, so they can be placed anywhere in that region
of pk ´ ℓ ` i ´ 2q entries, or before. Hence there are ℓ ` 1 ` k ´ ℓ ` i ´ 2 “ k ` i ´ 1 choices
where the first entry in the subpattern can go, k ` i choices where the second can go, and so on,
ending with ℓ ` 2 choices where the last entry in the region can go, which introduces the product

pk ` i ` 1qpk ` iqpk ` i ´ 1q . . . pℓ ` 2q “
pk`i`1q!

pℓ`1q! .

Combining and summing over the values of i (which represent disjoint patterns) gives that for
i ą 1, the number of parking functions from subcase 2 is given by

ℓ`1
ÿ

i“2

n!ℓ!pk ` i ´ 1q!pn ´ k ´ i ` 1q

pℓ ` 1q!pk ` iq!
“

ℓ`1
ÿ

i“2

n!pn ´ k ´ i ` 1q

pℓ ` 1qpk ` iq

Case 2. The displacement order is pk, lq, so the first car is displaced by k. Following the notation
of the lemma, assume 1 ď i ď ℓ. Observe that we don’t have to split up into subcases based on the
“starting values” from case 1. This choice of “starting value” from the previous case arose because
the displacement ℓ came first, and since ℓ ă k, we needed to add extra cars before the final a in
order to build up the displacement of k, which gave extra room to produce the ℓ displacement using
the extra cars. But in this case, since k ą l and the displacement of k is coming first, there is no
extra room to shift the starting value. So consider arbitrary 1 ď i ď ℓ.

The length of the pattern is k ` 1` i, so there are n´ k ´ i choices for a P rn´ k ´ is. Similarly
to the reasoning in case 1, there are n!

pk`1`iq! ways to select the indices in the parking function that

the pattern will occupy, and arrange the entries outside of the parking function. Also, we notice
that the first k terms before the second a can be arranged in any order, which can happen in k!
ways. Finally, the i´1 terms between the second a and the last entry are all parking without being
displaced, so they can be placed anywhere in that region of pi ´ 2q entries, or before. Hence there
are k ` 1 ` i ´ 1 “ k ` i choices where the first entry in the subpattern can go, k ` i ´ 1 choices
where the second can go, and so on, ending with k ` 2 choices where the k ´ ℓ ` i ´ 2-th entry can

go, which introduces the product pk ` iqpk ` i ´ 1qpk ` i ´ 2q . . . pk ` 2q “
pk`iq!
pk`1q! .

Combining and summing over the values of i (which represent disjoint patterns) gives that the
number of parking functions from case 2 is given by

ℓ
ÿ

i“1

n!k!pk ` iq!pn ´ k ´ iq

pk ` i ` 1q!pk ` 1q!
“

ℓ
ÿ

i“1

n!pn ´ k ´ iq

pk ` i ` 1qpk ` 1q

Case 3. Disjoint Primes
In this case, the primes are disjoint. Within each nontrivial prime, the structure exactly coincides

with the case in which one car was displaced. The parking order of that structure is completely
determined by the starting value of the prime component and the displacement within that prime.
Thus, if one prime displaces a single car by k and the other prime displaces a single car by ℓ, the

choice for starting values of both components (a and b, respectively) is given by 2

ˆ

n ´ pk ` lq

2

˙

,

or the number of ways to pick ℓ ` 1 and k ` 1 sized blocks of consecutive integers from rns. This
indicates the slots that cars with preferences within these primes will park.

17

Then, we can choose the spots for pa, a ` 1, . . . , a ` k ´ 1, aq in

ˆ

n

k ` 1

˙

ways, and the spots

for pb, b ` 1, . . . , b ` ℓ ´ 1, bq in

ˆ

n ´ pk ` 1q

ℓ ` 1

˙

ways. Moreover, there are k! ways to order pa, a `

1, . . . , a` k ´ 1q before the repeated a, and there are ℓ! ways to order pb, b` 1, . . . , b` ℓ´ 1q before
the repeated b. Finally, the number of ways to permute the entries in the parking function that
are not in either prime is pn ´ pk ` ℓ ` 2qq!. Combining gives that the number of parking functions
from case 3 is given by

ˆ

n ´ pk ` ℓq

2

˙ˆ

n

k ` 1

˙ˆ

n ´ pk ` 1q

ℓ ` 1

˙

2k!ℓ!pn ´ pk ` ℓ ` 2qq!

The longest case is the disjoint one, which requires that n ě k ` ℓ ` 2, hence this enumeration
is well-defined for n ě k ` ℓ ` 2.

The following corollary is useful for our later enumerations.

Corollary 4.10.1. For either of the possible displacement orders, pℓ, kq or pk, ℓq, the number of
parking functions of length n with displacement partition λ “ k ` ℓ where 1 ď ℓ ă k ď n ´ 1
and n ě k ` ℓ ` 2, where the two displaced cars belong to disjoint primes and with the chosen
displacement order, is

k!ℓ!

ˆ

n ´ pk ` ℓq

2

˙ˆ

n

k ` 1

˙ˆ

n ´ pk ` 1q

ℓ ` 1

˙

pn ´ pk ` ℓ ` 2qq!

Proof. We provide a finer count of the disjoint case of Theorem 4.10. All steps of the enumeration
from the previous proof are the same, except fixing a displacement order amounts to fixing the
relative order between a and b (with a and b defined in Theorem 4.10). Indeed, swapping a and b in
the previous count, and the resulting factor of 2, accounts for the fact that after having chosen the
slots occupied by the two subpatterns, we can have either one have a smaller initial value, which
is equivalent to swapping the displacement order. So we remove the factor of 2 and the corollary
follows.

We can easily convert an enumeration of parking functions of length n with a fixed displacement
partition to an enumeration of prime parking functions of the displacement partition, by substituting
the length of the prime for n.

Corollary 4.10.2. The number of prime parking functions with displacement partition λ “ k ` ℓ
where 1 ď ℓ ă k ď n ´ 1 is given by

$

’

&

’

%

k!pk´ℓq

ℓ`1 , for n “ k ` 1,
pk`i´1q!

k`1 `
pk`i´1q!

ℓ`1 , for n “ k ` i, 2 ď i ď ℓ ` 1

0 else

,

/

.

/

-

Proof. We know that prime parking functions are parking functions whose prime decomposition is
itself. Hence we can use Lemma 4.6 to characterize the cases that the prime parking function can
take and Theorem 4.10 to count them. We take the cases from the theorem corresponding to a

18

single prime, and include only terms from the count that account for ways to permute the pattern
within the prime. Equivalently, we can set n to be equal to the length of the prime.

A single prime of length k ` 1 can only happen in a single way, corresponding to the i “ 1
subcase of case 1 in Lemma 4.6. Setting n “ k ` 1, the first row of the corollary follows.

For 2 ď i ď ℓ ` 1, we note that the prime of length k ` i can occur in two ways: with
displacement ℓ first, substituting i into the theorem, or with displacement k first, substituting i´ 1
into the theorem (since the length of the pattern in this case is k`j`1 for 1 ď j ď ℓ). Substituting
n “ k ` i for this range of i, the rest of the corollary follows.

Remark 4.11. Corollary 4.2 can easily be converted into an enumeration of the number of parking
functions with displacement partition λ “ k ` ℓ for k ` 1 ď n ď k ` ℓ ` 1, which completes the
enumeration of Theorem 4.10 for all values of n. The disjoint case is impossible for k ` 1 ď n ď

k ` ℓ ` 1, so the number of parking functions with displacement partition k ` ℓ with length in this
range are given by the number of prime parking functions in Corollary 4.2. The rearrangement term
is found from the same reasoning as in the proof of Theorem 4.10, corresponding to the number
of ways to choose a, the ways to choose the slots taken by the prime subpattern, and the ways
to rearrange outside terms, all of which only depend on the length of the nontrivial prime. This
process converts the above enumeration of prime parking functions to the enumeration of parking
functions for k ` 1 ď n ď k ` ℓ ` 1.

Theorem 4.12. The number of parking functions with displacement partition λ “ k ` k, where
1 ď k ď n ´ 2, is given by

k
ÿ

i“1

n!pn ´ k ´ iq

pk ` i ` 1qpk ` 1q
` pk!q2pn ´ p2k ` 2qq!

ˆ

n ´ 2k

2

˙ˆ

n

k ` 1

˙ˆ

n ´ pk ` 1q

k ` 1

˙

for n ě 2k ` 2.

Proof. By Remark 4.9, the pattern of the displacement λ “ k ` k is the same as displacement
λ “ k ` ℓ, where 1 ď ℓ ă k with displacement order pk, ℓq, after replacing ℓ with k. Hence after
substituting k for ℓ in the term from Theorem 4.10 and term in Corollary 4.10.1 corresponding to
displacement order pk, ℓq, we have the desired enumeration.

Corollary 4.12.1. The number of prime parking functions with displacement partition λ “ k ` k
for 1 ď k ď n ´ 2 is given by

"

pk`iq!
k`1 , for n “ k ` 1 ` i, 1 ď i ď k

0 else

*

Proof. As in Corollary 4.10.2, we can evaluate the enumeration in Theorem 4.12 with n equal to
the length of the prime that contributes the displacements.

Remark 4.13. Analogously to Remark 4.11, the above enumeration can easily be used to determine
the number of parking functions with displacement partition λ “ k ` k of length n, where k ` 2 ď

n ď 2k ` 1. This completes the enumeration of Theorem 4.12 for all n.

19

4.3 Three Displaced Cars

Now we characterize the prime parking functions with 3 displaced cars and enumerate prime parking
functions of length n with a fixed displacement partition as a sum over each possible displacement
order. First, we prove a lemma to help with the enumeration.

Lemma 4.14. In any prime parking function of length n, the first n ´ 1 entries form a parking
function (not necessarily prime) of length n ´ 1. The last car must be displaced from its preference
αn, say by k spots, and must park in the n-th spot. Thus, n “ αn ` k.

Proof. Let α “ pα1, α2, . . . , αnq be a prime parking function of length n and β “ pβ1, β2, . . . , βnq

be a rearrangement into weakly increasing order. Since α is prime, we know that β1 “ 1 and βi ă i
for all 1 ă i ď n. Suppose αn is sent to βk for some k P rns. Let γ “ pγ1, γ2, . . . , γn´1q be the same

rearrangement β but with the βk removed, i.e. γ “ pβ1, . . . , xβk, . . . , βnq. In this new arrangement,
it is evident that from index k and beyond, γi ă i`1 so that γi ď i. Indeed γ satisfies the criterion
of being a classical parking function, as desired.

If the entire parking function is prime, then αi ă n for all i, so the preference of every car,
including the last car one, is less than n. Since the first n ´ 1 entries form a parking function, the
first n ´ 1 slots are occupied before the last car parks, so the last car must park in slot n and is
displaced. Hence n “ αn ` k.

In the following observation we make the upper bound on the largest displacement term explicit,
so that it doesn’t have to be explicitly written in the rest of the subsection.

Remark 4.15. For displacement partition λ “ k ` ℓ ` m where 1 ď m ă l ă k, we have k ă n
since n ´ 1 is the maximum displacement of the third displaced car. For displacement partition
λ “ k ` ℓ ` ℓ, where 1 ď ℓ ă k we have k ă n also. For displacement partition λ “ k ` k ` ℓ where
1 ď ℓ ă k, we have k ă n ´ 1, and for displacement partition λ “ k ` k ` k where k ě 1, we have
k ă n ´ 2. These upper bounds on the largest displacement term are assumed throughout the rest
of the subsection.

We now introduce the idea of strongly and weakly grouped prime parking functions in order to
exploit separate properties of each in our enumerations.

Definition 4.16. Suppose a prime parking function of length n has m ą 1 displaced cars. Let
pi1, i2, . . . , imq denote the indices in the parking function of the m displaced cars. If for any 1 ď j ď

m, the first ij entries of the parking function form a prime parking function (of length ij), then the
original prime parking function is strongly grouped. In other words, a strongly grouped prime
parking function has that every time a car is displaced, the displacement overlaps the prime of the
previous displaced car. One can observe that for strongly grouped prime parking functions, the
displacement order is equal to the order that displacements happen in time (the i-th car displaced
in the parking function is also the displaced car that parks in the i-th smallest spot among all
displaced cars). If a prime parking function is not strongly grouped, call it weakly grouped. In
particular, when there are 3 displaced cars, a prime parking function is strongly grouped if and
only if after removing the final entry, the remaining parking function is prime.

For example, the prime parking function p1, 2, 3, 1, 2, 6, 5q is strongly grouped. The displacements
occur at indices 4, 5, and 7, and the subsequences p1, 2, 3, 1q,p1, 2, 3, 1, 2q, and p1, 2, 3, 1, 2, 6, 5q are
all prime. After removing the final entry, the resulting parking function p1, 2, 3, 1, 2, 6q is prime.

20

Figure 4 shows where each car ci parks and represents displacements as line segments from preferred
slot to final parking spot.

car-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.png car-silhouette-side-14.pngcar-silhouette-side-14.pngc1 c6c3c2 c4

1 2 3 4 5

displacement 3

6 7

c5 c7

displacement 3

displacement 2

Figure 4: The parking configuration for the parking function p1, 2, 3, 1, 2, 6, 5q. This parking function
is strongly grouped, as every displacement (the displacement line segments above the cars, which
represent nontrivial prime factors) overlaps the previous one.

An example of a weakly grouped prime parking function is p1, 2, 3, 1, 4, 5, 5, 2q. There is a
displacement at index 7, but the length 7 subsequence p1, 2, 3, 1, 4, 5, 5q is not prime. Indeed, after
removing the final entry, the resulting parking function p1, 2, 1, 4, 5, 4q is not prime. Figure 5 visually
represents the parking process.

car-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.pngcar-silhouette-side-14.png car-silhouette-side-14.pngcar-silhouette-side-14.pngc1 c2 c3 c4 c5

1 2 3 4 5 6 7

c6 c7

displacement 2 displacement 1

displacement 5

Figure 5: The parking configuration for the parking function p1, 2, 3, 1, 4, 5, 5, 2q. This parking
function is weakly grouped: before the last car parks, the first two displacement segments (nontrivial
prime factors) are disjoint. The second displacement does not overlap the first.

With the definition of strongly/weakly grouped prime parking functions in mind, the following
lemma is useful to characterize the possible displacement orders of a weakly grouped prime parking
function.

Lemma 4.17. A weakly grouped prime parking function with displacement order pa, b, cq has c ě

b ` 2.

Proof. Let cf denote the car displaced by c, cb the car displaced by b, and ca the car displaced by
a. Since ca and cb belong to disjoint primes before cf parks, there are v ě 0 additional spaces from
the end of ca’s prime and before the start of cb’s. By Lemma 4.14, the entries before cf parks form
a parking function, and since the entire parking function becomes prime after cf parks, cf must
intersect ca’s prime and pass over all values in cb’s prime. Hence even if cf ’s preference is the last
entry in ca’s prime, it must pass over 1 ` v ` b ` 1 “ b ` v ` 2 ě b ` 2 slots. Hence since cf has
displacement c, we must have c ě b ` 2.

21

Corollary 4.17.1. For weakly grouped prime parking functions with 3 displaced cars:

1. If the displacement partition is λ “ k ` ℓ ` m where 1 ď m ă ℓ ă k, the displacement order
must be pm, ℓ, kq, pℓ,m, kq, or pk,m, ℓq.

2. If the displacement partition is λ “ k ` ℓ ` ℓ, where ℓ ă k, the displacement order must be
pℓ, ℓ, kq.

3. If the displacement partition is λ “ k ` k ` ℓ, where ℓ ă k, the displacement order must be
pk, ℓ, kq.

4. No weakly grouped prime parking functions with displacement partition λ “ k ` k ` k exist.

Proof. A weakly grouped prime parking function must have that the penultimate entry in the
displacement order is strictly less than the last entry in order to satisfy Lemma 4.17.

Using Lemma 4.14, which shows that the length of a prime parking function is completely deter-
mined by the final preference in the prime parking function and the value of the final displacement,
we can find the possible lengths of weakly grouped prime parking functions.

Lemma 4.18. Suppose a prime parking function has a car cm displaced by m, a car cℓ displaced
by ℓ, and after both, a car ck displaced by k.

If the displacement order is pm, ℓ, kq, then there exists a weakly grouped prime parking function
of length L if and only if maxpℓ ` m ` 2, kq ď L ´ 1 ď k ` m.

Proof. First, before ck parks, by Lemma 4.14, the entries form a parking function. Since the prime
parking function is weakly grouped, cm and cℓ belong to disjoint primes before ck parks. Hence
there are at least pm ` 1q ` pℓ ` 1q slots in the parking function before ck parks.

Note that with a parking function of length m`ℓ`2 slots, a car that then parks with preference
1 can only be displaced m ` ℓ ` 2 slots. Hence if k ą m ` ℓ ` 2, more slots must be added, namely
those up to and including the k-th slot, which would produce a parking function of length k before
ck parks. Hence the length L of the parking function before ck parks is at least maxpℓ ` m ` 2, kq.
This lower bound is attained when there are no extra spaces between the first two cars’ primes.

Now let’s consider the largest possible length of the prime parking function after ck parks. Since
the first two displaced cars cm and cℓ belong to disjoint primes before ck parks, ck must intersect the
first displaced car’s prime and pass over the second displaced car’s prime. Then, if k is sufficiently
large, extra slots will need to be added after the second displaced car’s prime in order to produce
displacement k. To maximize the length of the total prime parking function, the preference of ck
should be at the last slot occupied by the first disjoint prime. Since cm’s prime is to the left of cℓ’s,
the length of the total prime parking function is maximized (and attained) when ck has preferred
spot m ` 1, in which case the length of the total prime parking function is k ` 1 (the k slots ck
passes over and the one slot it parks in) plus the first m slots in cm’s prime. Hence the length L
of the parking function before ck parks is pk ` m ` 1q ´ 1 “ k ` m. Hence the reverse direction
follows. All other values of L satisfying the inequality can be attained by inserting additional spaces
between the first and second cars’ primes and cm having the same preference as in the minimal
case, completing the forward direction.

Removing the last entry of a weakly grouped prime parking function produces a parking function
with 2 cars that are displaced disjointly. Based on the possible lengths for this disjointly-grouped

22

parking function, computed above, and the previous enumeration of disjointly-grouped parking
functions with 2 displaced cars, we count the total number of weakly grouped prime parking func-
tions in the following lemma.

Lemma 4.19. The number of weakly grouped prime parking functions with displacement partition
λ “ k ` ℓ ` m, where 1 ď m ă ℓ ă k, is given below.

Case 1. The displacement order is pm, ℓ, kq. If k ě ℓ ` 2, the count is given by

k`m
ÿ

n“maxpℓ`m`2,kq

ℓ!m!

ˆ

n ´ pℓ ` mq

2

˙ˆ

n

m ` 1

˙ˆ

n ´ pm ` 1q

ℓ ` 1

˙

pn ´ pℓ ` m ` 2qq!

Case 2. The displacement order is pℓ,m, kq. If k ě m ` 2, the count is given by

k`ℓ
ÿ

n“maxpℓ`m`2,kq

ℓ!m!

ˆ

n ´ pℓ ` mq

2

˙ˆ

n

m ` 1

˙ˆ

n ´ pm ` 1q

ℓ ` 1

˙

pn ´ pℓ ` m ` 2qq!

Case 3. The displacement order is pk,m, ℓq. If ℓ ě m ` 2, the count is given by

k`ℓ
ÿ

n“k`m`2

k!m!

ˆ

n ´ pk ` mq

2

˙ˆ

n

m ` 1

˙ˆ

n ´ pm ` 1q

k ` 1

˙

pn ´ pk ` m ` 2qq!

There are no weakly grouped primed parking functions with any other displacement order.

Proof. First, the three displacement orders above give the only possible displacement orders to
consider, by Corollary 4.17.1.

Consider the first two cases, where the last car that is displaced is displaced by k. By Lemma
4.14, the last entry in the parking function must be the entry that contributes the k displacement.
Also, by the same lemma, the value of k and the final preference completely determine the length
of the the prime parking function. Hence if the prime parking function has length n ` 1, then the
first n elements represent a parking function with 2 cars being displaced disjointly. Since Lemma
4.18 gives all possible values of the length of the parking function before the final preference, and by
Lemma 4.14, we know that for each n in the sum, the final preference overlaps the first prime (hence
giving a larger prime parking function), ranging over all values of n and summing via Corollary
4.10.1 gives exactly the desired count.

Notice that the bounds and summand are also well-defined. The last term of the summand
requires that n ě ℓ`m`2, which is satisfied by the lower index range in the sum. For displacement
order pm, ℓ, kq, using Lemma 4.17, the upper range of the index k ` m has that k ` m ą k and
k ` m ě ℓ ` m ` 2. Analogous reasoning holds for displacement order pℓ,m, kq.

We use the same reasoning as above for the case of displacement order pk,m, ℓq. To show that
the summand is well-defined, we must have that n ě k ` m ` 2, which is satisfied by the lower
index of the counter variable. To show that the bounds are well-defined, note that ℓ ě m ` 2, so
ℓ ` k ě k ` m ` 2, as needed.

Theorem 4.20. The number of weakly grouped prime parking functions with 3 cars displaced, where
at least two displacements are equal, is given below.

23

1. The displacement partition is λ “ k ` k ` ℓ, where 1 ď ℓ ă k, the displacement order is
pk, ℓ, kq, and k ě ℓ ` 2. The count is

2k
ÿ

n“k`ℓ`2

k!ℓ!

ˆ

n ´ pℓ ` kq

2

˙ˆ

n

ℓ ` 1

˙ˆ

n ´ pℓ ` 1q

k ` 1

˙

pn ´ pℓ ` k ` 2qq!

2. The displacement partition is λ “ k`ℓ`ℓ, where 1 ď ℓ ă k, the displacement order is pℓ, ℓ, kq,
and k ě ℓ ` 2. The count is

k`ℓ
ÿ

n“maxp2ℓ`2,kq

pℓ!q2
ˆ

n ´ 2ℓ

2

˙ˆ

n

ℓ ` 1

˙ˆ

n ´ pℓ ` 1q

ℓ ` 1

˙

pn ´ p2ℓ ` 2qq!

For any other displacement orders for displacement partition λ “ k ` ℓ ` ℓ or λ “ k ` k ` ℓ, and
for displacement partition λ “ k ` k ` k, there are no weakly grouped prime parking functions.

Proof. By Corollary 4.17.1, the above two cases are the only ones that can have a weakly grouped
prime parking function with 3 displaced cars and at least two equal displacement terms. The counts
follow from the same reasoning as Lemma 4.19.

Having enumerated weakly grouped prime parking functions, we now consider strongly grouped
prime parking functions with 3 displaced cars. First we characterize the patterns that can give rise
to a strongly grouped prime parking functions with a fixed displacement partition.

Lemma 4.21. For a strongly grouped prime parking function, α, with displacement partition λ “

k ` ℓ ` m, where unless otherwise stated, 1 ď m ă ℓ ă k, exactly one of the following is true:

Case 1. The displacement order is pm, ℓ, kq. Fix i where 1 ď i ď m ` 1.

Subcase (i): We have k ě ℓ ` i.
Up to a shift in the “starting value” as in Remark 4.22, the parking order of the prime is given by

pra, a ` m ´ 1s
looooooomooooooon

m terms

, a, ra ` m ` 1, a ` i ` ℓ ´ 2s
looooooooooooooomooooooooooooooon

ℓ´m`i´2 terms

, a ` i ´ 1, ra ` ℓ ` i, a ` k ` j ´ 2s
looooooooooooooomooooooooooooooon

k´ℓ´i`j´1 terms

, a ` j ´ 1q

for some 1 ď j ď ℓ ` i. The total length of the prime is k ` j.

Subcase (ii): We have k ă ℓ ` i.
Up to a shift in the “starting value” as in Remark 4.22, the parking order of the prime is given by

pra, a ` m ´ 1s
looooooomooooooon

m terms

, a, ra ` m ` 1, a ` i ` ℓ ´ 2s
looooooooooooooomooooooooooooooon

ℓ´m`i´2 terms

, a`i´1, ra ` ℓ ` i, a ` ℓ ` i ` j ´ 2s
looooooooooooooooomooooooooooooooooon

j´1 terms

, a`ℓ`j`i´k´1q

for some 1 ď j ď k. The total length of the prime is ℓ ` i ` j.

Case 2. The displacement order is pm, k, ℓq with ℓ ď k. Fix i where 1 ď i ď m ` 1. The parking
order of the prime is given by

pra, a ` m ´ 1s
looooooomooooooon

m terms

, a, ra ` m ` 1, a ` i ` k ´ 2s
loooooooooooooooomoooooooooooooooon

k´m`i´2 terms

, a`i´1, ra ` k ` i, a ` k ` i ` j ´ 2s
loooooooooooooooooomoooooooooooooooooon

j´1 terms

, a`k`i`j´ℓ´1q

24

for some 1 ď j ď ℓ. The total length of the prime is k ` i ` j.

Case 3. The displacement order is pℓ,m, kq where m ď ℓ. Fix i where 1 ď i ď m.

Subcase (i): We have k ě ℓ ` i ` 1.
The parking order of the prime is given by

pra, a ` ℓ ´ 1s
loooooomoooooon

ℓ terms

, a, ra ` ℓ ` 1, a ` ℓ ` i ´ 1s
looooooooooooooomooooooooooooooon

i´1 terms

, a ` ℓ ´ m ` i, ra ` ℓ ` i ` 1, a ` k ` j ´ 2s
loooooooooooooooooomoooooooooooooooooon

k´ℓ´i`j´2 terms

, a ` j ´ 1q

for some 1 ď j ď ℓ ` i ` 1. The total length of the prime is k ` j.

Subcase (ii): k ă ℓ ` i ` 1
The parking order of the prime is given by

pra, a ` ℓ ´ 1s
loooooomoooooon

ℓ terms

, a, ra ` ℓ ` 1, a ` ℓ ` i ´ 1s
looooooooooooooomooooooooooooooon

i´1 terms

, a`ℓ´m`i, ra ` ℓ ` i ` 1, a ` ℓ ` i ` j ´ 1s
loooooooooooooooooooomoooooooooooooooooooon

j´1 terms

, a`ℓ`i`j´kq

for some 1 ď j ď k. The total length of the prime is ℓ ` i ` j ` 1.

Case 4. The displacement order is pℓ, k,mq where 1 ď m ď ℓ.
The parking order of the prime is given by

pra, a ` ℓ ´ 1s
loooooomoooooon

ℓ terms

, a, ra ` ℓ ` 1, a ` i ` k ´ 2s
looooooooooooooomooooooooooooooon

k´ℓ`i´2 terms

, a`i´1, ra ` k ` i, a ` k ` i ` j ´ 2s
loooooooooooooooooomoooooooooooooooooon

j´1 terms

, a`k`i`j´m´1q

for some 1 ď j ď m. The total length of the prime is k ` i ` j.

Case 5. The displacement order is pk, ℓ,mq with m ď ℓ ď k. Fix i where 1 ď i ď ℓ.
The parking order of the prime is given by

pra, a ` k ´ 1s
looooooomooooooon

k terms

, a, ra ` k ` 1, a ` k ` i ´ 1s
looooooooooooooomooooooooooooooon

i´1 terms

, a`k´ℓ`i, ra ` k ` i ` 1, a ` k ` i ` j ´ 1s
loooooooooooooooooooomoooooooooooooooooooon

j´1 terms

, a`k`i`j´mq

for some 1 ď j ď m. The total length of the prime is k ` i ` j ` 1.

Case 6. The displacement order is pk,m, ℓq with ℓ ď k. Fix 1 ď i ď m.
The parking order of the prime is given by

pra, a ` k ´ 1s
looooooomooooooon

k terms

, a, ra ` k ` 1, a ` k ` i ´ 1s
looooooooooooooomooooooooooooooon

i´1 terms

, a`k´m`i, ra ` k ` i ` 1, a ` k ` i ` j ´ 1s
loooooooooooooooooooomoooooooooooooooooooon

j´1 terms

, a`k`i`j´ℓq

for some 1 ď j ď ℓ. The total length of the prime is k ` i ` j ` 1.

Remark 4.22. The patterns above assume for clarity that when the first two entries of the dis-
placement order are increasing, that the overall prime’s smallest entry is a, the preference of the
first displaced car. We account for instances where this is not the case in our enumerations, with
what we call “starting values”.

Proof of Theorem 4.21. See Appendix.

25

As in the case of 2 displaced cars, we enumerate the number of strongly grouped prime parking
functions with 3 displaced cars from the number of rearrangements of each pattern that preserve
the displacement partition.

Theorem 4.23. The number of strongly grouped prime parking functions with displacement parti-
tion m ` ℓ ` k, where 1 ď m ă ℓ ă k unless otherwise stated, and a fixed displacement order, is
given below.

Case 1. The displacement order is pm, ℓ, kq.

ℓ`1
ÿ

j“1

pℓ ´ mqpk ` j ´ 1q!

pm ` 1qpℓ ` 1q
`

ÿ

iPS1

ℓ`i
ÿ

j“1

pk ` j ´ 1q!

pm ` 1qpℓ ` iq
`

ÿ

iPS2

k
ÿ

j“1

pℓ ` i ` j ´ 1q!

pm ` 1qpℓ ` iq

where S1 “ r2,maxpm ` 1, k ´ ℓqs and S2 “ r2,maxpm ` 1, k ´ ℓ ´ 1qs.

Case 2. The displacement order is pm, k, ℓq with ℓ ď k.

ℓ
ÿ

j“1

pk ´ mqpk ` jq!

pm ` 1qpk ` 1q
`

ℓ
ÿ

j“1

m`1
ÿ

i“2

pk ` i ` j ´ 1q!

pm ` 1qpk ` iq

Case 3. The displacement order is pℓ,m, kq where m ď ℓ.

ÿ

iPS1

ℓ`i`1
ÿ

j“1

pk ` j ´ 1q!

pℓ ` 1qpℓ ` i ` 1q
`

ÿ

iPS2

k
ÿ

j“1

pℓ ` i ` jq!

pℓ ` 1qpℓ ` i ` 1q

where S1 “ r1,maxpm, k ´ ℓ ´ 1qs and S2 “ r1,maxpm, k ´ ℓ ´ 2qs.

Case 4. The displacement order is pℓ, k,mq where 1 ď m ď ℓ.

m
ÿ

j“1

pk ´ ℓqpk ` jq!

pℓ ` 1qpk ` 1q
`

m
ÿ

j“1

ℓ`1
ÿ

i“2

pk ` i ` j ´ 1q!

pℓ ` 1qpk ` iq

Case 5. The displacement order is pk, ℓ,mq with m ď ℓ ď k.

m
ÿ

j“1

ℓ
ÿ

i“1

pk ` i ` jq!

pk ` 1qpk ` i ` 1q

Case 6. The displacement order is pk,m, ℓq with ℓ ď k.

ℓ
ÿ

j“1

m
ÿ

i“1

pk ` i ` jq!

pk ` 1qpk ` i ` 1q

Remark 4.24. For displacement orders that end in the largest displacement term k, there are
two separate summands, corresponding to whether or not additional cars are required to be added
to attain displacement k. For displacement orders whose first two entries are increasing, the term
corresponding to i “ 1 is separated for terms corresponding to i ą 1, based on consideration of
“starting values”.

26

Proof of Theorem 4.23. See Appendix.

Now we combine enumerations for strongly and weakly grouped prime parking functions to
count the number of prime parking functions of fixed length n with a fixed displacement order.

Proposition 4.25. The number of prime parking functions of length n with displacement partition
k ` ℓ ` m with certain displacement orders below is:

Case 1. The displacement order is pk,m, ℓq and k`m`2 ď n´1 ď k`ℓ and k`3 ď n ď k`ℓ`m`1,
where ℓ ě m ` 2.

k!m!

ˆ

n ´ 1 ´ pk ` mq

2

˙ˆ

n ´ 1

m ` 1

˙ˆ

n ´ 1 ´ pm ` 1q

k ` 1

˙

pn´ 1´ pk `m` 2qq!`
ÿ

iPS1

pn ´ 1q!

pk ` 1qpk ` i ` 1q

where S1 “ rmaxp1, n ´ pk ` 1q ´ ℓq,minpm,n ´ pk ` 1q ´ 1qs.

Case 2. The displacement order is pm, k, ℓq with ℓ ď k and k ` 2 ď n ď k ` ℓ ` m ` 1.

pk ´ mqpn ´ 1q!

pm ` 1qpk ` 1q
˚ 1c `

ÿ

iPS2

pn ´ 1q!

pm ` 1qpk ` iq

where S2 “ rmaxp2, n ´ k ´ ℓq,minpm ` 1, n ´ k ´ 1qs and 1c “ 1 when n ´ k ´ ℓ ď 1 and
minpm ` 1, n ´ pk ` 1qq ě 1 and is 0 otherwise.

Case 3. The displacement order is pℓ, k,mq with m ď ℓ and k ` 2 ď n ď k ` ℓ ` m ` 1.

pk ´ ℓqpn ´ 1q!

pℓ ` 1qpk ` 1q
˚ 1d `

ÿ

iPS3

pn ´ 1q!

pℓ ` 1qpk ` iq

where S3 “ rmaxp2, n ´ k ´ mq,minpℓ ` 1, n ´ k ´ 1qs and 1d “ 1 when n ´ k ´ m ď 1 and
minpℓ ` 1, n ´ pk ` 1qq ě 1 and is 0 otherwise.

Case 4. The displacement order is pk, ℓ,mq with m ď ℓ ď k and k ` 3 ď n ď k ` ℓ ` m ` 1.

ÿ

iPS4

pn ´ 1q!

pk ` 1qpk ` i ` 1q

Where S4 “ rmaxp1, n ´ pk ` 1q ´ mq,minpℓ, n ´ pk ` 1q ´ 1qs.

Proof. Consider the first case, when the displacement order is pk,m, ℓq. First let’s consider the
strongly grouped prime parking functions. The length of the pattern of this displacement order
is k ` i ` j ` 1 where 1 ď i ď m and 1 ď j ď ℓ. We have i ě 1 and since j ď ℓ, we have
i ě n´ pk ` 1q ´ ℓ. Similarly, we have i ď m and since j ě 1, we have i ď n´ pk ` 1q ´ 1. Then as
n “ k ` i ` j ` 1, substituting n ´ pk ` 1q ´ i for j gives the first term.

Now let’s consider weakly grouped prime parking functions. Recall that in this case, the first
n ´ 1 entries form the disjoint k ` m displacement with displacement order pk,mq, so their count
is given by Lemma 4.19 using n ´ 1 instead of n. The final statement in the first case follows from
Remark 4.9.

The other cases follow from analogous reasoning, but in the cases after the first, only strongly
grouped parking functions are possible.

27

As Remark 4.24 says, when the displacement order is increasing in its first two entries, we must
break up the cases i “ 1 and i ą 1 separately. In the cases two and three above, the first term
corresponds to the contribution from i “ 1 if i “ 1 is a valid value of i for this choice of n. In these
cases, the indicator variable on the first summand is 1. If i “ 0 is not a valid value of i for this
value of n, then the indicator variable is 0 and the first summand is excluded from the count.

We complete the enumeration for displacement orders ending with k.

Proposition 4.26. For prime parking functions with 3 cars displaced and final entry k in its
displacement order, the number of prime parking functions of length n with displacement partition
k ` ℓ ` m is given below.

Case 1. The displacement order is pm, ℓ, kq and n satisfies maxpℓ`m` 2, kq ď n´ 1 ď k `m, and
k ě ℓ ` 2.

ℓ!m!

ˆ

n ´ 1 ´ pℓ ` mq

2

˙ˆ

n ´ 1

m ` 1

˙ˆ

n ´ 1 ´ pm ` 1q

ℓ ` 1

˙

pn ´ 1 ´ pℓ ` m ` 2qq!`

pℓ ´ mqpn ´ 1q!

pm ` 1qpℓ ` 1q
˚ 11PS1

`
ÿ

iPS1|ią1

pn ´ 1q!

pm ` 1qpℓ ` iq
`

ÿ

iPS2

pn ´ 1q!

pm ` 1qpℓ ` iq

where S1 and S2 are the discrete intervals

S1 “ rmaxp1, n ´ k ´ ℓq,minpm ` 1, k ´ ℓqs

S2 “ rmaxpn ´ k ´ ℓ, k ´ ℓ ` 1q,m ` 1s

Case 2. The displacement order is pℓ,m, kq with m ď ℓ and n satisfies maxpℓ`m` 2, kq ď n´ 1 ď

k ` ℓ.

ℓ!m!

ˆ

n ´ 1 ´ pℓ ` mq

2

˙ˆ

n ´ 1

m ` 1

˙ˆ

n ´ 1 ´ pm ` 1q

ℓ ` 1

˙

pn ´ 1 ´ pℓ ` m ` 2qq!`

ÿ

iPS1

pn ´ 1q!

pℓ ` 1qpℓ ` i ` 1q
`

ÿ

iPS2

pn ´ 1q!

pℓ ` 1qpℓ ` i ` 1q

where S1 and S2 are the discrete intervals

S1 “ rmaxp1, n ´ k ´ ℓ ´ 1q,minpm, k ´ ℓ ´ 1qs

S2 “ rmaxpn ´ k ´ ℓ ´ 1, k ´ ℓq,ms.

Proof. This follows from a combinatorial argument to count both the strongly and weakly grouped
possible prime parking functions, considering separately the two subcases for the strongly grouped
prime parking functions.

The above lemmas complete the enumeration of the number of prime parking functions of any
length n with 3 displaced cars. Indeed, for a fixed length n, the number of prime parking functions
with the fixed displacement partition is given by the sum of the above enumerations for each possible
displacement order, including each term (there are 6 total) if and only if n satisfies the conditions
of the case in the lemma. If n satisfies only the condition corresponding to the strongly grouped
primes, then only include the summand corresponding to those primes.

28

4.4 Beyond Three Displaced Cars

When counting prime parking functions with 3 displaced cars, enumerating weakly grouped prime
parking functions reduces to enumerations of disjoint parking functions (not prime) with 2 displaced
cars. In general, a prime parking function with m ą 2 displaced cars is either weakly or strongly
grouped. Weakly grouped prime parking functions, after removing the last entry, revert back to
ordinary parking functions with m ´ 1 displacements. Hence a recursive characterization of prime
parking functions with a fixed displacement partition depends crucially on understanding strongly
grouped prime parking functions since these do not revert back to counts of smaller lengths.

In the following theorem, we give a recursive pattern construction of strongly grouped prime
parking functions with a fixed displacement order and any number of displaced cars.

Theorem 4.27. Suppose a strongly grouped prime parking function α has displacement partition
λ “ d1 ` d2 ` ¨ ¨ ¨ ` dm, where the di’s are weakly decreasing. Given a pattern of length L that
represents the displacement of the first m ´ 1 cars (in any displacement order), where m ą 1, the
pattern of all m cars is below.

Case 1. The final displaced car to park contributes displacement d1 and d1 ě L.
Then the total pattern is obtained by appending the subpattern

pa ` L, a ` L ` 1, . . . , a ` j ` d1 ´ 2
looooooooooooooooooooooomooooooooooooooooooooooon

d1 ´ L ` j ´ 1 terms

, a ` j ´ 1q

for 1 ď j ď L. The length of the total pattern is d1 ` j.

Case 2. The final displaced car to park contributes displacement di ‰ d1, or the final displaced car
to park contributes displacement d1 but d1 ă L.
Then the total pattern is obtained by appending the subpattern

pa ` L, a ` L ` 1, . . . , a ` L ` j ´ 2
loooooooooooooooooooooomoooooooooooooooooooooon

j´1 terms

, a ` L ` j ´ di ´ 1q

for 1 ď j ď di. The length of the total pattern is L ` j.

Proof of Theorem 4.27. See Appendix A.

In the following theorem, we use the recursive pattern construction to develop a recursive enu-
meration for a fixed displacement partition, for any number of displaced cars.

Theorem 4.28. Suppose a strongly grouped prime parking function α has displacement partition
d1 ` d2 ` ¨ ¨ ¨ ` dm where the di’s are in strictly decreasing order, for m ą 2. Choose any m ´ 1
entries in the displacement partition. Given a sum of the form in Theorem 4.23 representing the
number of prime parking functions with the displacement partition of m ´ 1 terms (for each of the
pm ´ 1q! possible displacement orders), and length L of the pattern corresponding to the parking
of the first m ´ 1 cars, the number of strongly grouped prime parking functions with displacement
partition d1 ` d2 ` ¨ ¨ ¨ ` dm can be obtained as follows:

Case 1. The final displaced car to park contributes displacement d1 (so d1 is the one term excluded
from the m ´ 1 preexisting count) and d1 ě L.

29

For each summand in the sum, add a variable jm summing from 1 to L. Inside the summand, add
the factor

pd1 ` jm ´ 1q!

L!
.

Case 2. Otherwise, let di denote the displacement of the car excluded from the count of m ´ 1
cars.
For each summand in the sum, add a variable jm summing from 1 to di. Inside the summand, add
the factor

pL ` jm ´ 1q!

L!
.

Proof. First suppose that the final displaced car to park contributes a displacement d1 and that
d1 ě L. By Theorem 4.27, we are adding d1 ´ L ` jm ´ 1 terms before the final car attempts to
park, for variable 1 ď jm ď d1. We notice that each of these d1 ´L`jm ´1 terms are all parking in
their desired slots, and so they can be rearranged anywhere before or at their current positions in
the pattern. Hence there are L`pd1 ´L`j´1q “ d1 `jm ´1 choices for the first entry, d1 `jm ´2
for the second, and so on, ending with L ` 1 choices for the last. This introduces the product

pd1 ` jm ´ 1qpd1 ` jm ´ 2q . . . pL ` 1q “
pd1 ` jm ´ 1q!

L!
.

If j2, . . . , jm´1 denote the counter variables in the sum for the chosen m ´ 1 cars, then this
new factor must be added inside the sum to account for the fact that each distinct value of the
ordered tuple pj2, j3, . . . , jm´1, jmq represents a different prime parking function, and all prime
parking functions with displacement partition d1 ` ¨ ¨ ¨ ` dm are counted when all possible values of
pj2, j3, . . . , jm´1, jmq are accounted for.

Now suppose that we are not in the previous case, and let di denote the displacement of the
car excluded from the count of m ´ 1 cars. By Theorem 4.27, we are adding jm ´ 1 terms before
the final car attempts to park, for 1 ď jm ď di. Similar to the previous case, each of these jm ´ 1
terms are all parking in their desired slots, and so we can be rearranged anywhere before or at their
current positions in the pattern. Hence there are L ` jm ´ 1 choices for the first entry, L ` jm ´ 2
choices for the second, and so on, ending with L ` 1 choices for the last entry. This introduces the
factor

pL ` jm ´ 1qpL ` jm ´ 2q ¨ ¨ ¨ pL ` 1q “
pL ` jm ´ 1q!

L!

into the sum, for the same reasoning as in the first case.

Example 4.29. We will use Theorem 4.28 to count the number of strongly grouped prime parking
functions with four displaced cars and displacement order pm, k, ℓ, dq where m ă ℓ ă k ă d.

We build the count with 4 displaced cars from the enumeration for the first 3 displaced cars,
which is given in Theorem 4.23. By Theorem 4.23, the number of strongly grouped prime prime
parking functions with displacement partition λ “ k ` ℓ ` m and displacement order pm, k, ℓq is
given by

ℓ
ÿ

j“1

pk ´ mqpk ` jq!

pm ` 1qpk ` 1q
`

ℓ
ÿ

j“1

m`1
ÿ

i“2

pk ` i ` j ´ 1q!

pm ` 1qpk ` iq

with pattern length k ` i ` j.

30

Let’s use Theorem 4.28 to count the number of strongly grouped prime parking functions with 4
displaced cars. Since d is the largest displacement term, there are two cases. The strongly grouped
primes accounted for in the previous sum, with 3 displaced cars, have length L “ k ` i` j for some
choice of i and j. If d ě L, then the number of strongly grouped primes with displacement order
pm, k, ℓ, dq is given by

ℓ
ÿ

j“1

k`j`1
ÿ

j4“1

pk ´ mqpk ` jq!pd ` j4 ´ 1q!

pm ` 1qpk ` 1qpk ` j ` 1q!
`

ℓ
ÿ

j“1

m`1
ÿ

i“2

k`i`j
ÿ

j4“1

pk ` i ` j ´ 1q!pd ` j4 ´ 1q!

pm ` 1qpk ` iqpk ` i ` jq!

recalling that the first summand corresponds to i “ 1. Alternatively, if d ă L, then the count
is given by

ℓ
ÿ

j“1

d
ÿ

j4“1

pk ´ mqpk ` jq!pk ` j ` j4q!

pm ` 1qpk ` 1qpk ` j ` 1q!
`

ℓ
ÿ

j“1

m`1
ÿ

i“2

d
ÿ

j4“1

pk ` i ` j ´ 1q!pk ` i ` j ` j4 ´ 1q!

pm ` 1qpk ` iqpk ` i ` jq!

Combining the two cases, we have to make sure that each pi, jq pair is accounted for in the
correct case. The number of strongly grouped prime parking functions with displacement order
pm, k, ℓ, dq is

ÿ

p1,jqPS1

k`j`1
ÿ

j4“1

pk ´ mqpk ` jq!pd ` j4 ´ 1q!

pm ` 1qpk ` 1qpk ` j ` 1q!
`

ÿ

pi,jqPS1

iě2

k`i`j
ÿ

j4“1

pk ` i ` j ´ 1q!pd ` j4 ´ 1q!

pm ` 1qpk ` iqpk ` i ` jq!

`
ÿ

p1,jqPS2

d
ÿ

j4“1

pk ´ mqpk ` jq!pk ` 1 ` j ` j4 ´ 1q!

pm ` 1qpk ` 1qpk ` j ` 1q!
`

ÿ

pi,jqPS2

iě2

d
ÿ

j4“1

pk ` i ` j ´ 1q!pk ` i ` j ` j4 ´ 1q!

pm ` 1qpk ` iqpk ` i ` jq!

where S1 “ tpi, jq | i P rm ` 1s, j P rℓs, d ě k ` i ` ju corresponds to the first case and
S2 “ tpi, jq | i P rm ` 1s, j P rℓs, d ă k ` i ` ju corresponds to the second.

This example shows that the number of strongly grouped prime parking functions with any
given displacement partition and displacement order can be enumerated recursively, starting with
the known counts with 2 or 3 cars being displaced.

Remark 4.30. Theorem 4.27 gives a recursive way to build the pattern of any number of cars
being displaced in a strongly grouped prime parking function for displacement partition that has
no equal terms; i.e., no cars have the same displacement. However, the pattern of any number
of cars being displaced where the displacement partition has any number of equal terms can be
reduced to the criterion for Theorem 4.27 based on Remark 4.9, where the displacement of k ` k
is equivalent to the displacement pattern of k ` ℓ with displacement order pk, ℓq, replacing ℓ with
k. One strategy is to replace a sequence of equal displacement terms with a descending group of
variables, while preserving the relative order between variable terms and outside terms.

As an example, consider the displacement partition 6 ` 4 ` 4 ` 3 ` 3 ` 3 ` 2. Suppose we want
to enumerate the number of prime parking functions with this displacement partition and with

31

displacement order p4, 6, 3, 3, 4, 3, 1q. We know that displacement partition 4`4 is equivalent to the
pattern for displacement partition k1 ` ℓ1 where 1 ď ℓ1 ă k1 with displacement order pk1, ℓ1q. We
also know that the displacement partition 3 ` 3 ` 3 is equivalent to the pattern for displacement
partition k2 ` ℓ2 ` m2 where 1 ď m2 ă ℓ2 ă k2 with displacement order pk2, ℓ2,m2q. Hence we
can express the total displacement order as pk1, 6, k2, ℓ2, ℓ1,m2, 2q with relations 2 ă m2 ă ℓ2 ă

k2 ă ℓ1 ă k1 ă 6, and find its pattern (and count) with Theorem 4.27, replacing ℓ1, k1 with 4 and
m2, ℓ2, k2 with 3 in the pattern. Observe that the subsequence of terms in the displacement order
corresponding to displacement 3 are descending, and the same is true for terms corresponding to 4.

Hence Theorem 4.28 recursively enumerates the number of strongly grouped prime parking
functions with any displacement partition, after performing the above adjustment for repeated
displacement terms as needed.

4.5 Prime Parking Functions with Displacement Partition 2 ` 2 ` ¨ ¨ ¨ ` 2

Consider prime parking functions where every displaced car is displaced by exactly 2 spots, so the
displacement partition is λ “ 2 ` ¨ ¨ ¨ ` 2 with k ą 0 terms. What prime parking functions can
produce this displacement partition? The displacement partition λ “ 2 is produced by the prime
121. For the displacement partition λ “ 2 ` 2, there are two possibilities: 1212 and 12143. We
notice that in the case of 1212, the prime is equivalent to starting from 121 and then appending
a single entry, introducing no new undisplaced cars. In the second case, 12143 is equivalent to
starting from 121 and then appending two entries, the first of which is an undisplaced car and the
second of which gets displaced by 2 spots. We generalize this idea in the following lemma.

Lemma 4.31. Given a prime parking function p0 of length L ą 0 that has displacement partition
2 ` 2 ` ¨ ¨ ¨ ` 2, with k ą 0 terms, there are exactly two prime parking functions with displacement
partition 2` 2` ¨ ¨ ¨ ` 2, with k ` 1 terms, whose first L entries are p0. These two primes are given
by appending pL ´ 1q or alternatively the sequence pL ` 1, Lq, to p0.

Proof. First, recall that a prime parking function of length L parks in L consecutive spots, it’s clear
that in either case, the resulting parking function has displacement partition 2 ` 2 ` ¨ ¨ ¨ ` 2, with
k ` 1 terms. Also, in both cases the parking function remains prime: the first case case overlaps
the prime p0 at spots L ´ 1 and L, and similarly the second case overlaps the p0 at spot L.

Since appending any preference that is less than L´1 would produce a displacement more than
2, then any possible appended sequence must have all preferences at least L ´ 1. The appended
sequence must have some entry overlap p0 to remain prime, so the possible places of overlap are
L ´ 1 and L. Also, the last car in the appended sequence must be displaced (by 2 spots) in order
for the parking function to remain prime. The only possibilities are pL ´ 1q and pL ` 1, Lq.

With the previous lemma in mind, we can represent all possible parking functions that give
rise to a displacement partition λ “ 2 ` 2 ` ¨ ¨ ¨ ` 2, with any number of terms, using a poset
where the prime parking function p1 is a parent of prime p2 when p1 arises from appending a single
displacement of 2 to the end p2. Figure 4.5 shows the first three levels of the poset. In general, the
k-th level consists of the prime parking functions with displacement partition λ “ 2 ` ¨ ¨ ¨ ` 2 with
exactly k terms of 2. In the poset, left edges correspond to appendings of a single entry, while right
edges correspond to appendings of two entries.

Given a prime on level k of the poset (produced by k ´ 1 appendings from 121), the unique
path from 121 to the prime gives the sequence of appendings that took place. In other words, any

32

121

1212 12143

12123 121254 121434 1214365

2

2 ` 2

2 ` 2 ` 2

...
...

...
...

...
...

...
...

Figure 6: The Hasse Diagram of the poset showing primes with displacement partition λ “ 2`¨ ¨ ¨`2,
where the number of terms in the displacement partition is equal to the level on the poset.

prime parking function with displacement partition 2 ` 2 ` ¨ ¨ ¨ ` 2 with k terms is associated with
a unique path from 121 to level k on the poset traversing k ´ 1 edges.

We now can use the poset to develop an enumeration of prime parking functions with dis-
placement partition λ “ 2 ` ¨ ¨ ¨ ` 2. Suppose we store the sequence of k ´ 1 displacements in a
pk ´ 1q-tuple s “ ps1, s2, . . . , sk´1q P r2sk´1 where si “ 1 if the i-th corresponds to a left edge, and

2 if the appending corresponds to a right edge. Let s1 “ p3 ` s1, 3 ` s1 ` s2, . . . , 3 `
řk´1

i“1 skq be
the pk ´ 1q-tuple where s1

i denotes the sum of the first i elements of s and 3. Then the length of
the prime after i appendings (after 121) is given by s1

i.

Proposition 4.32. The number of prime parking functions with displacement partition 2`2`¨ ¨ ¨`2,
with k ą 1 terms, is

ÿ

sPt1,2u
k´1

2
ź

iPrk´1s
si“2

ps1
i ´ 1q

where s1 “ p3 ` s1, 3 ` s1 ` s2, . . . , 3 `
řk´1

i“1 siq is a pk ´ 1q-tuple obtained from s P t1, 2uk´1.

Proof. As we’ve already explained, any prime parking function with displacement partition λ “

2 ` ¨ ¨ ¨ ` 2, with k terms, can be represented uniquely as a path from 121 to level k of the poset in
Figure 4.5, with the edges traversed on the path encoding all of the sequences appended.

However, each prime on level k of the poset can be rearranged in more than one way while
preserving the displacement partition. Firstly, the initial 121 in the pattern can be swapped to 211:
the first two letters can be swapped in 2! “ 2 ways. Suppose the i-th appending is an appending
by two entries. By Lemma 4.31, if L denotes length of the prime after i ´ 1 displacements, the
appended sequence is pL ` 1, Lq. Since the first added entry represents a car parking without
displacement, its preference can be moved to any of slots at or before its position, while preserving
the displacement partition. Since s1

i records the length of the pattern after the appending, the
number of possible positions for this undisplaced car is s1

i ´ 1. Accounting for the initial factor of
2 and all such rearrangements in the sequence s, each term in the sum gives the total number of
prime parking functions with the desired displacement partition whose appendings are given by the
prime si on the poset.

Since the position of the displaced car for the appending sequence pL´1q, as well as the position
of the second added entry in the appending sequence pL ` 1, L ´ 1q are fixed, there are no ways to

33

rearrange those preferences. Summing over all possible sequences in t1, 2uk´1, or equivalently, all
paths from 121 to level k of the poset, gives the result.

Since appendings of the form pL ´ 1q add a single new letter to the prime whereas appendings
of the form pL ` 1, Lq add two new letters, a sequence s P r2sk´1 completely determines the length
of the corresponding prime parking function. Hence we can enumerate primes with a fixed total
length.

Corollary 4.32.1. The number of prime parking functions of length n with displacement partition
2 ` 2 ` ¨ ¨ ¨ ` 2, with k ą 1 terms, is

ÿ

sPt1,2u
k´1

|ti|si“1u|“2k´n`1

2
ź

iPrk´1s
si“2

ps1
i ´ 1q

for k ` 2 ď n ď 2k ` 1, and 0 otherwise.

Proof. We only want to consider sequences s with total length n. A sequence s with c1 entries
equal to 1 has pk ´ 1q ´ c1 entries equal to 2. Since the 1s in s correspond to appendings of a
single entry, while 2s in s correspond to appendings of two entries, the total length of the prime
corresponding to s is 3 ` c1 ` 2pk ´ 1 ´ c1q “ 2k ´ c1 ` 1. Hence we require n “ 2k ´ c1 ` 1 or
equivalently, c1 “ 2k ´ n ` 1. The smallest possible length is when c1 “ k ´ 1 and the maximum
is when c1 “ 0.

4.6 Prime Parking Functions with Displacement Partition v ` v ` ¨ ¨ ¨ ` v,
with k terms.

Generalizing the previous subsection, we now consider prime parking functions with displacement
partition v ` v ` ¨ ¨ ¨ ` v, with k ě 1 terms, where v ą 1. When k “ 1, we have a permutation of
rvs followed by a 1. We begin by characterizing the possible ways to append new displacements to
a preexisting prime.

Proposition 4.33. Suppose we have a prime parking function p0 of length L ą 0 that has displace-
ment partition v ` v ` ¨ ¨ ¨ ` v where v ą 1 and with k ą 0 terms. Then there are exactly v distinct
subsequences that can be appended to p0 to produce a prime parking function with displacement
partition v ` v ` ¨ ¨ ¨ ` v with k ` 1 terms, if all but the last term of any subsequence are placed in
increasing order.

These possible subsequences, when all but the last of its terms are placed in increasing order,
have the form pL ` 1, L ` 2, . . . , L ` j

looooooooooooomooooooooooooon

j terms

, L ` j ´ 1 ´ vq for some 0 ď j ď v ´ 1.

Proof. First, any of the possible subsequences in the lemma statement produce a parking function
with displacement partition v ` v ` ¨ ¨ ¨ ` v: the subsequence adds j cars and hence and the first
L ` j spots are occupied before the last one parks, so the final car parks in spot L ` j which is 2
spots beyond its preference.

By Lemma 4.14, the last car to park in any prime parking function is displaced and parks in
the last spot on the street. Since the sequence introduces exactly one new displaced car, the last
entry and only the last entry in the sequence can represent a displaced car and the last car must

34

occupy the last spot on the street. Hence any sequence consists of some number of undisplaced cars
occupying a contiguous block of spots starting from L ` 1, followed by a car displaced by v slots.

If there are j undisplaced cars in the sequence, the final entry must be exactly L ` 1 ` j ´ v
in order to have displacement v. To remain prime, the final car must overlap p0, so its preference
must be at most L, corresponding to adding j “ v ´ 1 undisplaced cars, so 0 ď j ď v ´ 1. After
arranging the j undisplaced cars’ preferences in increasing order, the lemma follows.

We can construct a poset analagous to the one in Figure 4.5. Each entry has v choices for
appending a new displacement. The entries on level k of the poset give all possible patterns (in
terms of appending sequences) that produce the displacement partition v`v`¨ ¨ ¨`v with k terms.

For a prime parking function with this displacement partition, let’s store the sequence of k ´ 1
displacements after the initial one in a pk ´ 1q-tuple s “ rvsk´1. The value si denotes how many
letters were added to produce the i-th displacement after the initial one, so each si P rvs. Let

s1 “ pv ` 1 ` s1, v ` 1 ` s2, . . . , v ` 1 `
řk´1

i“1 siq be the pk ´ 1q-tuple where s1
i records the length of

the pattern after i appendings after the initial one.

Theorem 4.34. The number of prime parking functions with displacement partition v`v`¨ ¨ ¨`v,
with k terms, is

ÿ

sPrvs
k´1

v!
ź

iPrk´1s
sią1

ps1
i ´ 1q!

ps1
i ´ siq!

with s1 “ pv ` 1 ` s1, v ` 1 ` s2, . . . , v ` 1 `
řk´1

i“1 siq as previously defined.

Proof. The proof is analogous to the the proof of Proposition 4.32. The only difference is that
based on Proposition 4.33, the number of rearrangements for each pattern is now dependent on v
instead of being fixed at 2.

The first v terms of the initial displacement in the pattern can be arranged in v! ways. For an
appending that adds more than si ą 1 letters, the number of rearrangements of the si ´1 displaced

cars is given by ps1
i ´ 1qps1

i ´ 2q . . . ps1
i ´ si ` 1q “

ps1
i´1q!

ps1
i´siq! .

Analogously to Corollary 4.32.1, a sequence s of k ´ 1 appendings (after the initial one) has
each appending i adding si letters to the pattern. Hence the total length n of the pattern is given
by n “ k ` 1 `

řk´1
i“1 i ¨ |tj | sj “ iu|. As a result, we can enumerate prime parking functions of

fixed length with displacement partition v ` v ` ¨ ¨ ¨ ` v, with k terms.

Corollary 4.34.1. The number of prime parking functions of length n with displacement partition
v ` v ` ¨ ¨ ¨ ` v, with k terms, is

ÿ

sPrvs
k´1

ℓpsq“n

v!
ź

iPrk´1s
sią1

ps1
i ´ 1q!

ps1
i ´ siq!

for v ` k ď n ď vk ` 1, and 0 otherwise. For a sequence s P rvsk´1, s1 is defined as in Theorem

4.34, and ℓpsq “ k ` 1 `
řk´1

i“1 i ¨ |tj | sj “ iu|.

35

Proof. The proof follows from the same reasoning as in Corollary 4.32.1. The smallest possible
length of such a prime parking function would be in the case where every si equals 1, producing a
total length of v ` 1 ` pk ´ 1q “ v ` k. The largest possible length would have each si equal to v,
producing a total length v ` 1 ` vpk ´ 1q “ vk ` 1.

5 Displacement Program

Seeking to generalize results from previous sections, this section describes a method by which
one can efficiently count all parking functions of a given length n and displacement partition λ.
As parking functions can be partitioned into equivalence classes based on parking rearrangement
(Lemma 2.3) and each parking function within an equivalence class has the same displacement
partition, we can count the number of parking functions of length n and displacement partition λ
by enumerating each equivalence class.

We identify the class representatives as follows. Note that since a parking-ordered parking
function α of length n satisfies the condition ai ď i, α is componentwise less than or equal to
p1, 2, . . . , nq. This implies that for every parking-ordered parking function α, there exists a unique
vector d “ pd1, . . . , dnq such that α`d “ p1, 2, . . . , nq. For any parking-ordered α, the corresponding
vector d is always a valid displacement vector. In fact, this correspondence is a bijection: parking-
ordered parking functions of length n are in a one-to-one correspondence with displacement vectors
of length n. Therefore, finding the parking-ordered parking functions of length n and displacement
partition λ amounts to finding all displacement vectors of length n whose nonzero entries are exactly
those in λ. This leads to our first algorithm:

Displacement Vector Algorithm
Input: An integer n and an integer partition λ where λi ď n ´ i.
Output: The displacement vectors of length n whose nonzero entries are the parts of λ.
Method: Observe that displacement vectors whose nonzero entries are the parts of λ are formed
by rearrangements of λ with n´|λ| 0’s appended to it subject to the constraint that the ith number
in the rearrangement is less than i. This observation forms the basis for the algorithm. Note that
the first entry will always be 0 because the first car in a parking function cannot be displaced, so we
can solely focus on the second through nth entries and append a 0 to the front of each displacement
vector at the end of the algorithm.

Start with a list L of n´ |λ| ´ 1 0’s. Then append a number of 1’s equal to the number of 1’s in
λ to L and find all distinct permutations of L. Next, for each distinct permutation of L, remove the
first entry and find all of the ways to insert the 2’s in λ into the remaining entries. We must remove
the first entry because 2 cannot be the second number in a displacement vector (remember that the
first number in any of these permutations will end up being the second number in the displacement
vector because we will add a 0 at the beginning). Then reunite each different insertion with its
corresponding first entry. Do the same for 3, except remove the first two entries before inserting
the 3’s and replace both entries at the front after inserting the 3’s without changing their order.
Continue this process, removing and replacing one extra entry each time until you’ve inserted the
largest part in λ. Finally, add a 0 at the beginning of each vector to obtain all displacement vectors
of length n whose nonzero entries are the parts of λ. Thus, the number of displacement vectors are

36

counted by the formula
ś|λ|

i“1pn ´ λi ´ i ` 1q
śλ1

j“1p# of j’s in λq!
.

The numerator counts the number of possible ways one can rearrange the nonzero entries in
λ among n spots to form a displacement vector; the remaining unoccupied indices are filled by
zeroes. For each entry in a displacement vector d “ pd1, . . . , dnq, it must be the case that di ď i´ 1
for 1 ď i ď n. Therefore, λ1 can only occupy indices λ1 ` 1 through n of d, allowing for n ´ λ1

possibilities. For each λi thereafter, we have n´ λi ´ i` 1 possibilities. Multiplying these together
yields the numerator.

The denominator accounts for any repetitions in elements of the displacement partition λ. Since
λ1 is the largest value in an integer partition, we screen every value j between 1 and λ1, checking
if j has multiple repetitions in λ. For every one of these js, we divide by the number of those js
factorial to rectify any overcounting from repetitions, which yields the denominator.

The function displacement_vectors in Appendix B shows how to explicitly construct displace-
ment vectors of length n with nonzero values matching those in a displacement partition λ.

Example 5.1. Let n “ 6 and λ “ p4, 2, 1, 1q. We start by finding our initial list of 0’s. As |λ| “ 4,
n ´ |λ| ´ 1 “ 1, so we start with p0q. Notice that λ has two 1’s, so the distinct permutations with
those 1’s and the one 0 are

p0, 1, 1q p1, 0, 1q p1, 1, 0q.

For 2, we separate the first entry from the rest of each partial displacement vector as such:

p0qp1, 1q p1qp0, 1q p1qp1, 0q.

Then we list all the ways to insert the 2 into the rightmost portion

p0qp1, 1, 2q p0qp1, 2, 1q p0qp2, 1, 1q

p1qp0, 1, 2q p1qp0, 2, 1q p1qp2, 0, 1q

p1qp1, 0, 2q p1qp1, 2, 0q p1qp2, 1, 0q,

and reunite each different insertion with its corresponding first entry:

p0, 1, 1, 2q p0, 1, 2, 1q p0, 2, 1, 1q

p1, 0, 1, 2q p1, 0, 2, 1q p1, 2, 0, 1q

p1, 1, 0, 2q p1, 1, 2, 0q p1, 2, 1, 0q.

As λ has no 3’s, removing and replacing the first two entries from each partial displacement vector
changes nothing. For 4, we separate the first three entries from the rest of each partial displacement
vector

p0, 1, 1qp2q p0, 1, 2qp1q p0, 2, 1qp1q

p1, 0, 1qp2q p1, 0, 2qp1q p1, 2, 0qp1q

p1, 1, 0qp2q p1, 1, 2qp0q p1, 2, 1qp0q.

list all the ways to insert the 4 into the rightmost portion

p0, 1, 1qp2, 4q p0, 1, 1qp4, 2q p0, 1, 2qp1, 4q p0, 1, 2qp4, 1q p0, 2, 1qp1, 4q p0, 2, 1qp4, 1q

p1, 0, 1qp2, 4q p1, 0, 1qp4, 2q p1, 0, 2qp1, 4q p1, 0, 2qp4, 1q p1, 2, 0qp1, 4q p1, 2, 0qp4, 1q

p1, 1, 0qp2, 4q p1, 1, 0qp4, 2q p1, 1, 2qp0, 4q p1, 1, 2qp4, 0q p1, 2, 1qp0, 4q p1, 2, 1qp4, 0q,

37

and reunite each different insertion with its corresponding leftmost portion:

p0, 1, 1, 2, 4q p0, 1, 1, 4, 2q p0, 1, 2, 1, 4q p0, 1, 2, 4, 1q p0, 2, 1, 1, 4q p0, 2, 1, 4, 1q

p1, 0, 1, 2, 4q p1, 0, 1, 4, 2q p1, 0, 2, 1, 4q p1, 0, 2, 4, 1q p1, 2, 0, 1, 4q p1, 2, 0, 4, 1q

p1, 1, 0, 2, 4q p1, 1, 0, 4, 2q p1, 1, 2, 0, 4q p1, 1, 2, 4, 0q p1, 2, 1, 0, 4q p1, 2, 1, 4, 0q.

Finally, add a 0 at the beginning of each vector to recover all displacement vectors with length
n “ 6 and displacement partition λ “ p4, 2, 1, 1q:

p0, 0, 1, 1, 2, 4q p0, 0, 1, 1, 4, 2q p0, 0, 1, 2, 1, 4q p0, 0, 1, 2, 4, 1q p0, 0, 2, 1, 1, 4q p0, 0, 2, 1, 4, 1q

p0, 1, 0, 1, 2, 4q p0, 1, 0, 1, 4, 2q p0, 1, 0, 2, 1, 4q p0, 1, 0, 2, 4, 1q p0, 1, 2, 0, 1, 4q p0, 1, 2, 0, 4, 1q

p0, 1, 1, 0, 2, 4q p0, 1, 1, 0, 4, 2q p0, 1, 1, 2, 0, 4q p0, 1, 1, 2, 4, 0q p0, 1, 2, 1, 0, 4q p0, 1, 2, 1, 4, 0q.

According to the formula in the algorithm description,

ś|λ|

i“1pn ´ λi ´ i ` 1q
śλ1

j“1p# of j’s in λq!
“

p6 ´ 4 ´ 1 ` 1qp6 ´ 2 ´ 2 ` 1qp6 ´ 1 ´ 3 ` 1qp6 ´ 1 ´ 4 ` 1q

p2!qp1!qp0!qp1!q

“
p2qp3qp3qp2q

2
“ 18,

which matches the 18 displacement vectors we constructed above.

To enumerate the parking functions in each equivalence class, we introduce the characteristic
poset of a displacement vector.

Definition 5.2. The characteristic poset of a displacement vector of length n is the poset with
elements in rns described by the following cover relation: car j is covered by car i if di ą 0,
i ą j ě i ´ di, and i is the smallest index for which both of these properties are true. Write car j
is covered by car i as car j ă car i.

Definition 5.3. A linear extension of a poset is a total ordering on the nodes subject to the
constraint that if j ă i in the poset, then j ă i in the total ordering.

Lemma 5.4. The parking functions with a given parking-ordered order α are the linear extensions
of dpαq’s characteristic poset labeled with α’s preferences, with dpαq the displacement vector of α.

Proof. First, label the characteristic poset’s nodes using the preferences of the parking-ordered
parking function. Then suppose ℓ is a linear extension of the poset and read ℓ from its minimal
node to its maximal node. Since ℓ comprises the same preferences as α, ℓ is some permutation of
α. Since α is a parking function and permutations of parking functions are parking functions, ℓ is a
parking function. As ℓ is a linear extension of dpαq’s characteristic poset, the order of ℓ’s preferences
obeys dpαq’s characteristic poset’s cover relations. By the definition of the cover relations, when ℓ is
arranged into its parking rearrangement ℓ1, car i will have dpαqi cars park in front of it starting at
its preference. This means that ℓ1 has the same displacement vector as α. Since α is also parking-
ordered and each displacement vector corresponds to a unique parking-ordered parking function,
ℓ1 “ α.

Suppose β is a parking function whose parking rearrangement is α. Then car i in β has dpαqσpiq

cars park in or immediately after its preferred spot, βi, before it parks. This means the order of
the cars in β obey the cover relations that define the characteristic poset, and therefore this order
is achievable through a linear extension.

38

This leads to our second algorithm:

Linear Extensions Algorithm
Input: A displacement vector v
Output: The linear extensions of v’s characteristic poset
Method: Initialize a list L, which will contain the cover relations for the characteristic poset.
Iterate through the entries of v from left to right. For all i P rlengthpvqs and for all j P ti ´

vi, . . . i ´ 1u, if j has not already been covered, add j ă i to the list L of cover relations. Notice
that ti ´ vi, . . . , i ´ 1u only contains positive integers as vi ă i for all vi P v. By iterating from left
to right, we guarantee that car i is the first that gets displaced by car j. Then, use the list of cover
relations to construct the corresponding poset through Sage’s linear_extensions and cardinality

functions. By [4], these functions run in Opn2q time using Atkinson’s algorithm to compute the
number of linear extensions on a tree poset.

Example 5.5. Let α “ p1, 2, 1, 4, 2q, then the displacement vector is dpαq “ p0, 0, 2, 0, 3q. Car 3
is the first with nonzero displacement and its displacement is 2 so it covers cars 1 and 2, thus we
obtain the cover relations car 1 ă car 3 and car 2 ă car 3. The next car with nonzero displacement
is car 5 and its displacement is 3, so it covers cars 3 and 4. Note that even though 3 ą 0 and
2 ě 5 ´ 3, car 5 does not cover car 2 because car 3 already does. This means car 3 ă car 5 and car
4 ă car 5 are the rest of the cover relations that define the poset. Figure 7 is the Hasse diagram
for the characteristic poset of α’s displacement vector.

5

43

21 .

Figure 7: The Hasse diagram for the characteristic poset of dpαq

Relabeling the nodes with each car’s preference gives

2

41

21 .

The linear extensions of this poset are

2

4

1

2

1

2

1

4

2

1

2

1

2

4

1

2

1

2

1

4

2

4

1

1

2

2

1

4

1

2

2

1

1

4

2

2

1

1

2

4 .

39

The parking functions with partition-preserving order p1, 2, 1, 4, 2q are

p1, 2, 1, 4, 2q p1, 2, 4, 1, 2q p1, 4, 2, 1, 2q p4, 1, 2, 1, 2q

p2, 1, 1, 4, 2q p2, 1, 4, 1, 2q p2, 4, 1, 1, 2q p4, 2, 1, 1, 2q.

Combining the displacement vector and linear extension algorithms yields an algorithm whose
import is summarized by Theorem 5.6.

Theorem 5.6. Let PFnpλq be the set of parking functions of length n and displacement partition
λ. Let displacement vectorspn, λq be the set of displacement vectors of length n whose nonzero
entries are the parts of λ. Let lin extensions of disp vectorpvq be the set of linear extensions of a
displacement vector’s characteristic poset. Then

|PFnpλq| “
ÿ

vPdisplacement vectorspn,λq

| lin extensions of disp vectorpvq|.

Proof. The result follows from Lemma 2.2, Lemma 2.3, and Lemma 5.4.

5.1 Runtime Analysis

In this section, we analyze the runtime of the code in Appendix B, which outlines the algorithm
that counts all the parking functions of length n with displacement partition λ. A full description
of the functions in Appendix B is given in Section 5. Throughout this analysis, n represents the
length of the parking function inputted into the pf function.

We first analyze the function merge_preserving_order which returns all possible combinations
of two lists such that the order of the first list is preserved in the merged list. Let a be the length of
list1 and b the length of list2. The majority of the computation arises from the nested for loops

beginning on line 21. The first for loop iterates

ˆ

a ` b

a

˙

times (the output of indices on line 18

has that many entries). The second for loop iterates over a ` b entries with all other lines yielding
constant time. Using Stirling’s Approximation, one can verify that

pa ` bq

ˆ

a ` b

a

˙

“
pa ` bq

3
2 pa ` bqa`b

?
2πab ¨ aabb

. (˚)

We will use the expression (˚) on the final line to approximate runtime when the merge_preserving_order
function is used.

The displacement_vectors function has worst case Op
?
n4nq runtime. The bulk of the runtime

begins at the for loop on line 60. The for loop runs over the largest part of the partition, which is
n´1 in the worst case, yielding approximately Opnq iterations for the outermost for loop. The first
inner for loop on line 64 iterates over the elements of intermediate_vectors2. At the first iteration,
intermediate_vectors2 has one element. At every step thereafter, intermediate_vectors2 is cleared,
and then populated with len(merge_preserving_order(second_part_split, [part]*number_of_part

)) elements, as seen by line 72. In the worst case scenario, the partition consists of n ´ 1 1s. This

would imply that the inner for loop would iterate approximately

ˆ

n ` n

n

˙

times. Plugging in a “ n

and b “ n into equation ˚, we obtain

p2nq
3
2 p2nq2n

2n
?
π ¨ n2n

“

?
2n ¨ 4n
?
π

.

40

Therefore, the worst case runtime within each iteration is Op
?
n4nq. However, as the only unique

part of the partition was 1, the inner for loop will run in constant time for every other iteration of
the outer for loop as number_of_part is 0. The remaining for loops are negligible with respect to
Op

?
n4nq, so the displacement_vectors function runs in Op

?
n4nq time.

The lin_extensions_of_disp_vector function runs in Opn3q time. The outer for loop iterates
over the n entries in the displacement vector. The number of iterations of the inner for loop is
given by the value of the i-th displacement, which is bounded above by n ´ 1, giving a runtime of
Opn2q thus far. The if statement on line 101 iterates over the values in cover_relations, which has
a worst case length of n ´ 1. Therefore, the if statement runs in Opnq, so the nested for loops run
in Opn3q runtime. Outside of the loops, the cost of finding the linear extensions of the poset using
Atkinson’s algorithm is Opn2q . Hence the overall runtime of this function is Opn3q.

Finally, we analyze the pf function. The second for loop on line 127 is what contributes
non-negligible runtime. We iterate at most Op

?
n4nq times as calculated by the analysis of the

displacement_vectors function. Within each iteration, we compute the lin_extensions_of_disp_vector
function, which runs in Opn3q runtime. The final runtime is encapsulated in the following theorem.

Theorem 5.7. The runtime of the pf function is ď Opn7{24nq.

Sage generates all parking functions of length n by first listing all nondecreasing parking func-
tions (of which there are nth Catalan number many of these) and then permuting all its elements
while checking if each is a valid parking function [1]. To find all parking functions of this length n
with a displacement partition of λ, one must vet each generated parking function for this specific λ.
We will briefly show that our program for generating parking functions of length n and displacement
partition λ is far superior (in terms of runtime) to the naive method described above.

Asymptotically, the nth Catalan number Cn approaches

Cn «
4n

?
πn3{2

.

By Stirling’s Approximation,

n! «
?
2πn

´n

e

¯n

,

and multiplying these two yields the product

?
2

ˆ

4

e

˙n

nn´1 ě pn ` 1qn´1.

Screening for the displacement partition λ when generating the parking functions requires a runtime
of Ωpnq or greater, but we choose to forgo this term. Hence, the naive implementation will run no
faster than a runtime of Ωppn ` 1qn´1q, far slower than the worst case runtime of Opn7{24nq for pf

in Theorem 5.7.

A Some Combinatorial Proofs

Proof of Lemma 4.21. There are three cars displaced, one by m, another by ℓ, and another by k.
Let cm be the car displaced by m, cℓ be the car displaced by ℓ, and ck be the car displaced by k.
By assumption all three displacements happen in a single prime, and each displaced car overlaps
the previous’ prime.

41

First, suppose the the displacement order is pm, ℓ, kq.
After cℓ parks, the first ℓ` i slots are taken. We must consider the value ℓ` i. If k ą ℓ` i, then

cars must be added in order for ck to have displacement k. This is because even if ck attempts to
park in slot a, it will only have displacement ℓ` i ă k. Indeed, slots a` ℓ` i through a`k´1 must
be occupied, which is k ´ pℓ ` iq ą 0 slots. Suppose ck’s preference is the j-th slot in the prime, so
j ě 1, and j ď m ` 1 to remain a single prime. Since ck has displacement k, it must park in slot
a ` j ` k ´ 1, so slots a ` k through a ` k ` j ´ 2 must be occupied. Hence in total, slots a ` ℓ ` i
through a` j `k´2 must be added, which is k` j ´ ℓ´ i´1 terms. Then ck parks with preference
a` j ´ 1. The total length of the pattern is m` pℓ´m` i´ 2q ` 2` pk ´ ℓ´ i` j ´ 1q ` 1 “ k ` j.
Also, when k “ ℓ ` i then this same reasoning applies, noting that k ´ pℓ ` iq “ 0.

If k ă ℓ`i then no cars are required to be added for ck to park. Since slots a through a`ℓ`i´1
are occupied, the next available slot is a ` ℓ ` i, so ck’s preference must be at least a ` ℓ ` i ´ k.
If p is the preference of ck, let j “ p ´ pa ` ℓ ` i ´ kq ` 1, so j ě 1. Since the largest preference
ck can have while remaining in a single prime is a ` ℓ ` i ´ 1, j ď k. In order for ck to have
displacement k with its preference, it must park in slot p ` k “ a ` ℓ ` i ` j ´ 1, so the slots
a` ℓ` i through a` ℓ` i` j ´2, which is j ´1 slots, must be taken. Then ck parks with preference
p “ a ` ℓ ` i ` j ´ k ´ 1. The length of the pattern is ℓ ` i ` j. This completes case 1.

Now suppose that the displacement order is pm, k, ℓq. After ck parks, the first k ` i slots, slots
a through a ` k ` i ´ 1 are occupied. Since k ` i ą ℓ, the smallest preference that cℓ can have is
not a, but a ` k ` i ´ ℓ. If p is the preference of cℓ, let j “ p ´ pa ` k ` i ´ ℓq ` 1, so j ě 1. To
remain a single prime, p ď a ` k ` i ´ 1, so j ď ℓ. Since cℓ has displacement ℓ, it must park in slot
p ` ℓ “ a ` k ` i ` j ´ 1, hence slots a ` k ` i through a ` k ` i ` j ´ 2, which is j ´ 1 terms, must
be added. Then cℓ parks with preference p “ a ` k ` i ` j ´ ℓ ´ 1. The length of the pattern is
k ` i ` j. Hence case 2 follows.

The remaining cases follow from identical reasoning as the two cases above. Case 3 has two
subcases, based on whether cars are required to be added or not, so its proof is analagous to the
proof of Case 1. The remaining cases follow from an argument analagous to the proof of Case 2.

The statements allowing for equality within certain cases account for the patterns for a displace-
ment partition with some equal terms. These follow from Remark 4.9, that displacement of k`k is
identical to the displacement partition k` ℓ where displacement k ą ℓ happens first, then replacing
ℓ with k in the pattern.

Proof of Theorem 4.23. The general approach is to use Lemma 4.21 to characterize the pattern
of each displacement order, and then analyze which entries in the pattern can be permuted while
preserving the displacement partition.

For the displacement order pk, ℓ,mq, the first k terms can be rearranged in any of its k! per-
mutations while still preserving the displacement partition. Likewise, the i ´ 1 terms immediately
after the second a but before the term a ` k ´ ℓ ` i can be inserted anywhere before or at their
current slots. Hence there are k ` 1 ` i ´ 1 “ k ` i choices for the first term, k ` i ´ 1 choices
for the second, and so on, ending with k ` 2 choices where the i ´ 1th term can go, giving a fac-

tor of pk ` 2qpk ` 3q . . . pk ` iq “
pk`iq!
pk`1q! . Then, the j ´ 1 terms after the second a ` k ´ m ` i

and before the last entry can be inserted anywhere before or at their current slots. There are
k` i`1` j´1 “ k` i` j choices for the first, and so on, with k` i`2 choices for the j´1th term,

giving a factor of pk ` i ` 2qpk ` i ` 3q . . . pk ` i ` jq “
pk`i`jq!
pk`i`1q! . After combining and summing for

the possible values of i and j, the case of displacement order pk, ℓ,mq holds. This reasoning also
works for pk,m, ℓq, and the subcase of pℓ,m, kq where no cars are required to be added. For the

42

subcase of pℓ,m, kq where k ě ℓ ` i ` 1, then cars must be added. We follow the same argument,
except in the last step, we are adding k ´ ℓ ´ i ` j ´ 2 terms instead of j ´ 1. Hence after the first
ℓ ` i ` 1 terms have been added, there are ℓ ` i ` 1 ` pk ´ ℓ ´ i ` j ´ 2q “ k ` j ´ 1 choices for
the first term, k ` j for the second, and so on, ending with ℓ ` i ` 2 choices for the last term. This

gives the factor pk`j´1q!
pℓ`i`1q! . Following the rest of the logic but replacing this term gives the result for

the subcase.
For the displacement order pm, k, ℓq, we consider the subcases i “ 1 and i ą 1 separately, since

as explained in the proof of Theorem 4.10, having i “ 1 allows for different “starting values”. First,
consider i “ 1. In the first k terms, the subpattern of length m`1 which produces the displacement
m must appear, so there are k!

pm`1q! ways to select which slots are occupied by this subpattern and

arrange the entries outside of it. Also, as in the proof of Theorem 4.10, there are pk´mq choices for
the “starting value”. Then, we notice that the j ´1 terms immediately before the final term can all
be inserted anywhere before or at their current positions. There are k ` i ` pj ´ 1q “ k ` i ` j ´ 1
choices for the first entry, k` i`j´2 choices for the second, and so on, ending with k` i`1 choices

for the last entry, giving a factor of pk`i`j´1q!
pk`iq! . Substituting i “ 1 into this expression, combining

and summing over the possible values of j gives the first summand in the case. Now consider i ą 1,
so we can assume that the starting value is a. The first m terms can be rearranged in any order,
giving a factor of m!. The k ´ m ` i ´ 2 terms immediately after the second a can be inserted
anywhere before or at their current slots. Hence there are m`1`k´m`i´2 “ k`i´1 choices for
the first entry in this subpattern, k ` i choices for the second, and so on, ending with m` 2 choices

for the last entry in the subpattern, giving a factor of pm ` 2qpm ` 3q . . . pk ` i ´ 1q “
pk`i´1q!
pm`1q! .

Also, the j ´1 terms immediately before the final entry can be inserted anywhere before or at their

current slots. By the same reasoning as the i “ 1 subcase, this introduces a factor of pk`i`j´1q!
pk`iq! .

Combining and summing over the possible values of i and j gives the second summand in the case.
We also can apply this exact same reasoning to any displacement order whose two terms in the
displacement order are increasing, and where no cars are required to be added. Replacing m with
the first car in the order as appropriate, we obtain the counts for the displacement order pℓ, k,mq

and the subcase of pm, ℓ, kq where no cars are required to be added, namely when k ă ℓ ` i.
For displacement order pm, ℓ, kq with k ě ℓ` i, we follow the same argument, except in the last

step, we are adding k ´ ℓ´ i` j ´ 1 terms instead of ℓ´m` i´ 2. Hence after the first ℓ` i terms
have been added, there are ℓ ` i ` k ´ ℓ ´ i ` j ´ 1 “ k ` j ´ 1 choices for the first car, k ` j ´ 2

for the second, and so on, ending with ℓ ` i ` 1 choices for the last, giving a factor of pk`j´1q!
pℓ`iq! .

Breaking up the cases i “ 1 and i ą 1, following the previous logic, gives the result.
The claims that match the cases to counts of k`ℓ`m where there are some equal terms follows

from Remark 4.9.

Proof of Theorem 4.27. First, consider the case where d1 is the one car remaining to park. Then
slots a through a ` L ´ 1 are occupied, so without adding any cars, the maximum displacement
that can be attained is L.

If d1 ą L then cars must be added in order to attain displacement d1. In particular, slots a`L
through a ` d1 ´ 1 must be added, which is d1 ´ L slots. Suppose that the last car has preference
p, and let j “ p ´ a ` 1, so j ě 1. To remain a single prime, p ď a ` L ´ 1 so j ď L. Since the last
car has preference p, it must park in slot p ` d1 “ a ` j ` d1 ´ 1 in order to have displacement d1.
Hence the slots up to and including a ` j ` d1 ´ 2 must be taken. So in total, slots a ` L through
a` j ` d1 ´ 2, which is j ` d1 ´ ℓ´ 1 slots, must be added. Then the last car parks with preference

43

p “ a ` j ´ 1. The length of the total pattern is L ` d1 ´ L ` j ´ 1 ` 1 “ d1 ` j. (If d1 “ L then
this exact argument holds, and the general formula of d1 ´L` j ´1 terms is just just j ´1). Hence
case 1 follows.

If d ă L then no cars are required to be added. Slots a through a`L´ 1 are taken, so the next
available slot is a ` L. Hence the minimum preference p that the last car can have is a ` L ´ d1 in
order to have displacement d1. Let j “ p ´ pa ` L ´ d1q ` 1, so j ě 1. To remain a single prime,
p ď a ` L ´ 1, so j ď pa ` L ´ 1q ` pa ` L ´ d1q ` 1 “ d1. In order to have displacement d1, the
last car must park in slot p ` d1 “ pa ` L ` j ´ d1q ´ 1 ` d1 “ a ` L ` j ´ 1, so the slots a ` L
through a`L` j ´ 2, which is j ´ 1 slots, must be added. Then the last car parks with preference
p “ a ` L ` j ´ d1 ´ 1. The total length of the pattern is L ` j ´ 1 ` 1 “ L ` j. Hence the pattern
agrees with case 2.

Now let’s consider the case where the last car to park is di ‰ d1. In particular, the length of
the subpattern for the first m ´ 1 cars is at least d1 ` 1 ą di, we know that we are not required
to add any cars in order for di to park. The slots a through a ` L ´ 1 are occupied, and since the
next available slot is a ` L, the smallest preference p that the last car can have is a ` L ´ di. Let
j “ p´ pa`L´diq ` 1, so j ě 1. Since we require p ď a`L´ 1 for the parking function to remain
a single prime, this implies j ď di. In order for the last car to have displacement di, it must park
in slot p ` di “ pa ` L ` j ´ di ´ 1q ` di “ a ` L ` j ´ 1. Hence slots a ` L through a ` L ` j ´ 2,
which is j ´ 1 slots, must be added. Then the last car parks with preference p “ a`L` j ´ di ´ 1.
The length of the total pattern is L ` pj ´ 1q ` 1 “ L ` j. Hence the case follows.

B Python/Sage Scripts

This section contains the code used to implement Theorem 5.6. Sage version 9.6 and Python 3.7.9
were used for the following code. The function pf(n, partition) runs the code which outputs the
total number of parking functions with a length n and displacement partition λ.

1 import numpy as np

2 import itertools

3

4 def merge_preserving_order(list1, list2):

5 """

6 Returns the merging of list1 and list2 such that list1’s order is preserved in the

merged list.

7

8 Parameters:

9 list1 (list): A list of nonnegative integers

10 list2 (list): A list of one nonnegative integer repeated

11

12 Returns:

13 list_final (list): The merged list

14 """

15 list_final = []

16 sequence = list(range(len(list1) + len(list2)))

17 #all possible lists of length len(list1) from 0 to length of sequence - 1

18 indices = list(itertools.combinations(sequence, len(list1)))

19

44

20 #loop over these indices

21 for i in range(len(indices)):

22 temp = []

23 list1_count = 0 #index in list1

24 #building the temp array

25 for j in range(len(list1) + len(list2)):

26 #append the nonzero value

27 if j in indices[i]:

28 temp.append(list1[list1_count])

29 list1_count += 1

30 #append a zero if did not encounter a nonzero value

31 else:

32 temp.append(list2[0])

33 list_final.append(temp)

34 return list_final

35

36 def displacement_vectors(n, partition):

37 """

38 Return all possible displacement vectors of length n which can be formed from the

values in the displacement partition. See section 5 Displacement Program for an

explanation of the algorithm.

39

40 Parameters:

41 n (int): A positive integer

42 partition (list): A nonincreasing list of positive integers representing an

integer partition

43

44 Returns:

45 intermediate_vectors2 (list): All displacement vectors of length n formed from

partition

46 """

47 #if the partition is empty, initialize it with 0

48 if not partition:

49 partition = [0]

50 #if the parking function is length 1, it can only have the 0 displacement vector

51 if n == 1:

52 return [[0]]

53 #adds zeroes to the displacement partition until it has length n - 1

54 partition_with_zeroes = np.pad(partition, (0, n - len(partition) - 1), ’constant’)

55 intermediate_vectors1 = [] # creating new displacment vectors at the current step

56

57 # all displacement vectors from the previous step will go in this list

58 intermediate_vectors2 = [[x for x in partition_with_zeroes if x == 0]]

59

60 #looping from 1 to the largest value in partition

61 for part in range(1, partition_with_zeroes[0] + 1):

62 #counting the number of each part in the partition

63 number_of_part = np.count_nonzero(partition_with_zeroes == part)

64 for item in intermediate_vectors2:

65 #for each item in intermediate_vectors2, we want to insert our part number

45

66 #throughout item and then append that to intermediate_vectors1. However

67 #we only want to do this after ignoring the first item - 1 terms.

68 first_part_split = item[:part - 1] #splits off the first item - 1 terms

69 second_part_split = item[part - 1:] #gives the remaining terms

70

71 #merges the second list with the new parts while preserving the order of second

list in merged_dps

72 merged_dps = merge_preserving_order(second_part_split, [part]*number_of_part)

73 #reappends the first part to each new list in merged_dps

74 for merged_dp in merged_dps:

75 intermediate_vectors1.append(first_part_split + merged_dp)

76 #setup for the next value in the displacement partition

77 intermediate_vectors2 = intermediate_vectors1

78 intermediate_vectors1 = []

79 #insert a 0 at the beginning of the displacement vectors and return

80 for dp in intermediate_vectors2:

81 dp.insert(0, 0)

82 return intermediate_vectors2

83

84 def lin_extensions_of_disp_vector(disp_vector):

85 """

86 Return the number of linear extensions of the characteristic poset of the displacement

vector. See section 5 Displacement Program for an explanation of the algorithm.

87

88 Parameters:

89 n (int): A positive integer

90 partition (list): A nonincreasing list of positive integers representing an

integer partition

91

92 Returns:

93 intermediate_vectors2 (list): All displacement vectors of length n formed from

partition

94 """

95 cover_relations = []

96 #loop over the displacement vector

97 for i in range(len(disp_vector)):

98 #loop from 0 to value of disp_vector[i]

99 for j in range(int(disp_vector[i])):

100 #check if j is in first element of elements of cover_relations

101 if i - j - int(1) not in [row[int(0)] for row in cover_relations]:

102 #j has not been covered, so add it to the cover relations

103 cover_relations.append([i - j - int(1), i])

104 #creating the poset in sage with nodes as elements in the displacement vector and cover

relations

105 poset = Poset((list(range(len(disp_vector))), cover_relations), cover_relations = True)

106 #return the number of linear extensions of that poset

107 return poset.linear_extensions().cardinality()

108

109 def pf(n, partition):

110 """

46

111 Returns the number of parking functions with a length n and displacement partition.

112

113 Parameters:

114 n (int): A positive integer

115 partition (list): A nonincreasing list of positive integers representing an

integer partition

116

117 Returns:

118 counter (int): The number of parking functions of length n and displacement

partition

119 """

120 counter = 0

121 #Sorts the partition in nonincreasing order if it was inputted incorrectly

122 partition.sort(reverse = True)

123 #Checks if the partition is valid by the condition that partition[i] >= n - i

124 for i in range(len(partition)):

125 if partition[i] >= n - i:

126 return 0

127 for disp_vector in displacement_vectors(n, partition):

128 counter = counter + lin_extensions_of_disp_vector(disp_vector)

129 return counter

Acknowledgements

The authors would like to thank Susanna Fishel for her continued support throughout this
project. This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1929284 while the authors were in residence at the Institute for Computational
and Experimental Research in Mathematics in Providence, RI, during the Summer@ICERM
2022 program.

References

[1] Sagemath parking function documentation, accessed September 19, 2022.

[2] Y. Aguillon, D. Alvarenga, P.E. Harris, S. Kotapati, J.C. Martinez Mori, C.D. Monroe, Z. Say-
lor, C. Tieu, and D.A. Williams III, On parking functions and the tower of hanoi, American
Mathematical Monthly (2022).

[3] Drew Armstrong, Nicholas A Loehr, and Gregory S Warrington, Rational parking functions
and catalan numbers, Annals of Combinatorics 20 (2016), no. 1, 21–58.

[4] Mike D Atkinson, On computing the number of linear extensions of a tree, Order 7 (1990),
no. 1, 23–25.

[5] E. W. Bowen, personal communication to Sloane, N. J. A. (1976).

[6] Melody Bruce, Michael Dougherty, Max Hlavacek, Ryo Kudo, and Ian Kit Nicolas, A decom-
position of parking functions by undesired spaces, The Electronic Journal of Combinatorics 23
(2016).

47

[7] Emma Colaric, Ryan DeMuse, Jeremy L Martin, and Mei Yin, Interval parking functions,
Advances in Applied Mathematics 123 (2021), 102129.

[8] Louis Comtet, Advanced combinatorics, Springer, 1974.

[9] Alan G. Konheim and Benjamin Weiss, An occupancy discipline and applications, Siam Journal
on Applied Mathematics - SIAMAM 14 (1966).

[10] I. Gessel and S. Seo, A refinement of cayley’s formula for trees, Electric Journal of Combina-
torics 11 (2006), R27.

[11] Ira Gessel and Richard P Stanley, Stirling polynomials, Journal of Combinatorial Theory, Series
A 24 (1978), no. 1, 24–33.

[12] Louis H Kalikow, Enumeration of parking functions, allowable permutation pairs, and labeled
trees, Brandeis University, 1999.

[13] Ronald Pyke, The supremum and infimum of the poisson process, Ann. Math. Statist. 30
(1959), no. 2, 568–576.

[14] John Riordan, Ballots and trees, J. Combinatorial Theory 6 (1969), 408–411. MR 234843

[15] Richard P. Stanley, Enumerative combinatorics. vol. ii, Cambridge University Press, 1999.

[16] Catherine H. Yan, Parking functions, Handbook of enumerative combinatorics 440 (2015),
835–893.

48

	Introduction
	Preliminaries

	Parking Order and the Parking Rearrangement
	Prime Decomposition of Parking Functions
	Direct Enumerations
	A Single Displaced Car
	Two Displaced Cars
	Three Displaced Cars
	Beyond Three Displaced Cars
	Prime Parking Functions with Displacement Partition 2+2+…+2
	Prime Parking Functions with Displacement Partition v+v+…+v, with k terms.

	Displacement Program
	Runtime Analysis

	Some Combinatorial Proofs
	Python/Sage Scripts

